Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020107577> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2020107577 endingPage "764" @default.
- W2020107577 startingPage "755" @default.
- W2020107577 abstract "The natural gradient method has an ideal dynamic behavior which resolves the slow learning speed of the standard gradient descent method caused by plateaus. However, it is required to calculate the Fisher information matrix and its inverse, which makes the implementation of the natural gradient almost impossible. To solve this problem, a preliminary study has been proposed concerning an adaptive method of calculating an estimate of the inverse of the Fisher information matrix, which is called the adaptive natural gradient learning method. In this paper, we show that the adaptive natural gradient method can be extended to be applicable to a wide class of stochastic models: regression with an arbitrary noise model and classification with an arbitrary number of classes. We give explicit forms of the adaptive natural gradient for these models. We confirm the practical advantage of the proposed algorithms through computational experiments on benchmark problems." @default.
- W2020107577 created "2016-06-24" @default.
- W2020107577 creator A5012922872 @default.
- W2020107577 creator A5055812530 @default.
- W2020107577 creator A5081341130 @default.
- W2020107577 date "2000-09-01" @default.
- W2020107577 modified "2023-09-23" @default.
- W2020107577 title "Adaptive natural gradient learning algorithms for various stochastic models" @default.
- W2020107577 cites W1970789124 @default.
- W2020107577 cites W1995842804 @default.
- W2020107577 cites W2034996255 @default.
- W2020107577 cites W2038111264 @default.
- W2020107577 cites W2047962774 @default.
- W2020107577 cites W2053746978 @default.
- W2020107577 cites W2104760318 @default.
- W2020107577 cites W2166347285 @default.
- W2020107577 doi "https://doi.org/10.1016/s0893-6080(00)00051-4" @default.
- W2020107577 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11152207" @default.
- W2020107577 hasPublicationYear "2000" @default.
- W2020107577 type Work @default.
- W2020107577 sameAs 2020107577 @default.
- W2020107577 citedByCount "160" @default.
- W2020107577 countsByYear W20201075772012 @default.
- W2020107577 countsByYear W20201075772013 @default.
- W2020107577 countsByYear W20201075772014 @default.
- W2020107577 countsByYear W20201075772015 @default.
- W2020107577 countsByYear W20201075772016 @default.
- W2020107577 countsByYear W20201075772017 @default.
- W2020107577 countsByYear W20201075772018 @default.
- W2020107577 countsByYear W20201075772019 @default.
- W2020107577 countsByYear W20201075772020 @default.
- W2020107577 countsByYear W20201075772021 @default.
- W2020107577 countsByYear W20201075772022 @default.
- W2020107577 countsByYear W20201075772023 @default.
- W2020107577 crossrefType "journal-article" @default.
- W2020107577 hasAuthorship W2020107577A5012922872 @default.
- W2020107577 hasAuthorship W2020107577A5055812530 @default.
- W2020107577 hasAuthorship W2020107577A5081341130 @default.
- W2020107577 hasConcept C11413529 @default.
- W2020107577 hasConcept C115680565 @default.
- W2020107577 hasConcept C119857082 @default.
- W2020107577 hasConcept C126255220 @default.
- W2020107577 hasConcept C13280743 @default.
- W2020107577 hasConcept C134306372 @default.
- W2020107577 hasConcept C135252773 @default.
- W2020107577 hasConcept C153258448 @default.
- W2020107577 hasConcept C154945302 @default.
- W2020107577 hasConcept C185798385 @default.
- W2020107577 hasConcept C205649164 @default.
- W2020107577 hasConcept C206688291 @default.
- W2020107577 hasConcept C207467116 @default.
- W2020107577 hasConcept C2524010 @default.
- W2020107577 hasConcept C29406490 @default.
- W2020107577 hasConcept C33923547 @default.
- W2020107577 hasConcept C41008148 @default.
- W2020107577 hasConcept C50644808 @default.
- W2020107577 hasConceptScore W2020107577C11413529 @default.
- W2020107577 hasConceptScore W2020107577C115680565 @default.
- W2020107577 hasConceptScore W2020107577C119857082 @default.
- W2020107577 hasConceptScore W2020107577C126255220 @default.
- W2020107577 hasConceptScore W2020107577C13280743 @default.
- W2020107577 hasConceptScore W2020107577C134306372 @default.
- W2020107577 hasConceptScore W2020107577C135252773 @default.
- W2020107577 hasConceptScore W2020107577C153258448 @default.
- W2020107577 hasConceptScore W2020107577C154945302 @default.
- W2020107577 hasConceptScore W2020107577C185798385 @default.
- W2020107577 hasConceptScore W2020107577C205649164 @default.
- W2020107577 hasConceptScore W2020107577C206688291 @default.
- W2020107577 hasConceptScore W2020107577C207467116 @default.
- W2020107577 hasConceptScore W2020107577C2524010 @default.
- W2020107577 hasConceptScore W2020107577C29406490 @default.
- W2020107577 hasConceptScore W2020107577C33923547 @default.
- W2020107577 hasConceptScore W2020107577C41008148 @default.
- W2020107577 hasConceptScore W2020107577C50644808 @default.
- W2020107577 hasIssue "7" @default.
- W2020107577 hasLocation W20201075771 @default.
- W2020107577 hasLocation W20201075772 @default.
- W2020107577 hasOpenAccess W2020107577 @default.
- W2020107577 hasPrimaryLocation W20201075771 @default.
- W2020107577 hasRelatedWork W2062453129 @default.
- W2020107577 hasRelatedWork W2104760318 @default.
- W2020107577 hasRelatedWork W2343915705 @default.
- W2020107577 hasRelatedWork W2997919057 @default.
- W2020107577 hasRelatedWork W3086499488 @default.
- W2020107577 hasRelatedWork W3159389381 @default.
- W2020107577 hasRelatedWork W3208196855 @default.
- W2020107577 hasRelatedWork W4220847609 @default.
- W2020107577 hasRelatedWork W4295266589 @default.
- W2020107577 hasRelatedWork W4323927436 @default.
- W2020107577 hasVolume "13" @default.
- W2020107577 isParatext "false" @default.
- W2020107577 isRetracted "false" @default.
- W2020107577 magId "2020107577" @default.
- W2020107577 workType "article" @default.