Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020110561> ?p ?o ?g. }
- W2020110561 endingPage "197" @default.
- W2020110561 startingPage "175" @default.
- W2020110561 abstract "Determine effects of a limited-enforcement intelligent tutoring system in dermatopathology on student errors, goals and solution paths. Determine if limited enforcement in a medical tutoring system inhibits students from learning the optimal and most efficient solution path. Describe the type of deviations from the optimal solution path that occur during tutoring, and how these deviations change over time. Determine if the size of the problem-space (domain scope), has an effect on learning gains when using a tutor with limited enforcement.Analyzed data mined from 44 pathology residents using SlideTutor-a Medical Intelligent Tutoring System in Dermatopathology that teaches histopathologic diagnosis and reporting skills based on commonly used diagnostic algorithms. Two subdomains were included in the study representing sub-algorithms of different sizes and complexities. Effects of the tutoring system on student errors, goal states and solution paths were determined.Students gradually increase the frequency of steps that match the tutoring system's expectation of expert performance. Frequency of errors gradually declines in all categories of error significance. Student performance frequently differs from the tutor-defined optimal path. However, as students continue to be tutored, they approach the optimal solution path. Performance in both subdomains was similar for both errors and goal differences. However, the rate at which students progress toward the optimal solution path differs between the two domains. Tutoring in superficial perivascular dermatitis, the larger and more complex domain was associated with a slower rate of approximation towards the optimal solution path.Students benefit from a limited-enforcement tutoring system that leverages diagnostic algorithms but does not prevent alternative strategies. Even with limited enforcement, students converge toward the optimal solution path." @default.
- W2020110561 created "2016-06-24" @default.
- W2020110561 creator A5012812619 @default.
- W2020110561 creator A5023780476 @default.
- W2020110561 creator A5031214475 @default.
- W2020110561 creator A5033354061 @default.
- W2020110561 creator A5042944491 @default.
- W2020110561 creator A5044313420 @default.
- W2020110561 creator A5057123068 @default.
- W2020110561 date "2009-11-01" @default.
- W2020110561 modified "2023-10-05" @default.
- W2020110561 title "Effect of a limited-enforcement intelligent tutoring system in dermatopathology on student errors, goals and solution paths" @default.
- W2020110561 cites W1916694713 @default.
- W2020110561 cites W1983352506 @default.
- W2020110561 cites W1987235486 @default.
- W2020110561 cites W2010052797 @default.
- W2020110561 cites W2016288462 @default.
- W2020110561 cites W2020458978 @default.
- W2020110561 cites W2023802697 @default.
- W2020110561 cites W2034412738 @default.
- W2020110561 cites W2041201199 @default.
- W2020110561 cites W2042433261 @default.
- W2020110561 cites W2083578156 @default.
- W2020110561 cites W2084451064 @default.
- W2020110561 cites W2092198053 @default.
- W2020110561 cites W2102241854 @default.
- W2020110561 cites W2102365795 @default.
- W2020110561 cites W2114181363 @default.
- W2020110561 cites W2114436459 @default.
- W2020110561 cites W2117076205 @default.
- W2020110561 cites W2117311111 @default.
- W2020110561 cites W2163640453 @default.
- W2020110561 cites W2172010324 @default.
- W2020110561 cites W2509002782 @default.
- W2020110561 cites W2965940618 @default.
- W2020110561 cites W4239816899 @default.
- W2020110561 cites W4253077363 @default.
- W2020110561 cites W4367593137 @default.
- W2020110561 doi "https://doi.org/10.1016/j.artmed.2009.07.002" @default.
- W2020110561 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19782544" @default.
- W2020110561 hasPublicationYear "2009" @default.
- W2020110561 type Work @default.
- W2020110561 sameAs 2020110561 @default.
- W2020110561 citedByCount "15" @default.
- W2020110561 countsByYear W20201105612012 @default.
- W2020110561 countsByYear W20201105612013 @default.
- W2020110561 countsByYear W20201105612017 @default.
- W2020110561 countsByYear W20201105612018 @default.
- W2020110561 countsByYear W20201105612019 @default.
- W2020110561 countsByYear W20201105612021 @default.
- W2020110561 crossrefType "journal-article" @default.
- W2020110561 hasAuthorship W2020110561A5012812619 @default.
- W2020110561 hasAuthorship W2020110561A5023780476 @default.
- W2020110561 hasAuthorship W2020110561A5031214475 @default.
- W2020110561 hasAuthorship W2020110561A5033354061 @default.
- W2020110561 hasAuthorship W2020110561A5042944491 @default.
- W2020110561 hasAuthorship W2020110561A5044313420 @default.
- W2020110561 hasAuthorship W2020110561A5057123068 @default.
- W2020110561 hasConcept C119857082 @default.
- W2020110561 hasConcept C134306372 @default.
- W2020110561 hasConcept C142724271 @default.
- W2020110561 hasConcept C154945302 @default.
- W2020110561 hasConcept C17744445 @default.
- W2020110561 hasConcept C199360897 @default.
- W2020110561 hasConcept C199539241 @default.
- W2020110561 hasConcept C2776032170 @default.
- W2020110561 hasConcept C2777735758 @default.
- W2020110561 hasConcept C2778371403 @default.
- W2020110561 hasConcept C2779336797 @default.
- W2020110561 hasConcept C2779777834 @default.
- W2020110561 hasConcept C33923547 @default.
- W2020110561 hasConcept C36503486 @default.
- W2020110561 hasConcept C40969351 @default.
- W2020110561 hasConcept C41008148 @default.
- W2020110561 hasConcept C71924100 @default.
- W2020110561 hasConcept C82793941 @default.
- W2020110561 hasConceptScore W2020110561C119857082 @default.
- W2020110561 hasConceptScore W2020110561C134306372 @default.
- W2020110561 hasConceptScore W2020110561C142724271 @default.
- W2020110561 hasConceptScore W2020110561C154945302 @default.
- W2020110561 hasConceptScore W2020110561C17744445 @default.
- W2020110561 hasConceptScore W2020110561C199360897 @default.
- W2020110561 hasConceptScore W2020110561C199539241 @default.
- W2020110561 hasConceptScore W2020110561C2776032170 @default.
- W2020110561 hasConceptScore W2020110561C2777735758 @default.
- W2020110561 hasConceptScore W2020110561C2778371403 @default.
- W2020110561 hasConceptScore W2020110561C2779336797 @default.
- W2020110561 hasConceptScore W2020110561C2779777834 @default.
- W2020110561 hasConceptScore W2020110561C33923547 @default.
- W2020110561 hasConceptScore W2020110561C36503486 @default.
- W2020110561 hasConceptScore W2020110561C40969351 @default.
- W2020110561 hasConceptScore W2020110561C41008148 @default.
- W2020110561 hasConceptScore W2020110561C71924100 @default.
- W2020110561 hasConceptScore W2020110561C82793941 @default.
- W2020110561 hasIssue "3" @default.
- W2020110561 hasLocation W20201105611 @default.
- W2020110561 hasLocation W20201105612 @default.
- W2020110561 hasOpenAccess W2020110561 @default.