Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020133147> ?p ?o ?g. }
- W2020133147 endingPage "4222" @default.
- W2020133147 startingPage "4213" @default.
- W2020133147 abstract "The authors propose a nonrigid image registration approach to align two computed-tomography (CT)-derived lung datasets acquired during breath-holds at two inspiratory levels when the image distortion between the two volumes is large. The goal is to derive a three-dimensional warping function that can be used in association with computational fluid dynamics studies. In contrast to the sum of squared intensity difference (SSD), a new similarity criterion, the sum of squared tissue volume difference (SSTVD), is introduced to take into account changes in reconstructed Hounsfield units (scaled attenuation coefficient, HU) with inflation. This new criterion aims to minimize the local tissue volume difference within the lungs between matched regions, thus preserving the tissue mass of the lungs if the tissue density is assumed to be relatively constant. The local tissue volume difference is contributed by two factors: Change in the regional volume due to the deformation and change in the fractional tissue content in a region due to inflation. The change in the regional volume is calculated from the Jacobian value derived from the warping function and the change in the fractional tissue content is estimated from reconstructed HU based on quantitative CT measures. A composite of multilevel B-spline is adopted to deform images and a sufficient condition is imposed to ensure a one-to-one mapping even for a registration pair with large volume difference. Parameters of the transformation model are optimized by a limited-memory quasi-Newton minimization approach in a multiresolution framework. To evaluate the effectiveness of the new similarity measure, the authors performed registrations for six lung volume pairs. Over 100 annotated landmarks located at vessel bifurcations were generated using a semiautomatic system. The results show that the SSTVD method yields smaller average landmark errors than the SSD method across all six registration pairs." @default.
- W2020133147 created "2016-06-24" @default.
- W2020133147 creator A5006854308 @default.
- W2020133147 creator A5011527598 @default.
- W2020133147 creator A5037389227 @default.
- W2020133147 date "2009-08-17" @default.
- W2020133147 modified "2023-10-15" @default.
- W2020133147 title "Mass preserving nonrigid registration of CT lung images using cubic B-spline" @default.
- W2020133147 cites W1779094783 @default.
- W2020133147 cites W1888801276 @default.
- W2020133147 cites W1977035005 @default.
- W2020133147 cites W1977670780 @default.
- W2020133147 cites W1977677684 @default.
- W2020133147 cites W1990835448 @default.
- W2020133147 cites W1991968407 @default.
- W2020133147 cites W1994475524 @default.
- W2020133147 cites W2000359198 @default.
- W2020133147 cites W2001666669 @default.
- W2020133147 cites W2002188523 @default.
- W2020133147 cites W2009055261 @default.
- W2020133147 cites W2025084818 @default.
- W2020133147 cites W2026719206 @default.
- W2020133147 cites W2029859938 @default.
- W2020133147 cites W2035619816 @default.
- W2020133147 cites W2043349158 @default.
- W2020133147 cites W2054519638 @default.
- W2020133147 cites W2066401872 @default.
- W2020133147 cites W2071134472 @default.
- W2020133147 cites W2071504423 @default.
- W2020133147 cites W2078374709 @default.
- W2020133147 cites W2081979876 @default.
- W2020133147 cites W2113576511 @default.
- W2020133147 cites W2118420236 @default.
- W2020133147 cites W2123090765 @default.
- W2020133147 cites W2124580275 @default.
- W2020133147 cites W2128151681 @default.
- W2020133147 cites W2128684302 @default.
- W2020133147 cites W2140775860 @default.
- W2020133147 cites W2142311337 @default.
- W2020133147 cites W2142853128 @default.
- W2020133147 cites W2150703185 @default.
- W2020133147 cites W2152620868 @default.
- W2020133147 cites W2156875677 @default.
- W2020133147 cites W2157380596 @default.
- W2020133147 cites W2161912327 @default.
- W2020133147 cites W2167090712 @default.
- W2020133147 cites W2271761891 @default.
- W2020133147 cites W2594972269 @default.
- W2020133147 cites W2611747753 @default.
- W2020133147 cites W4238314278 @default.
- W2020133147 doi "https://doi.org/10.1118/1.3193526" @default.
- W2020133147 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2749644" @default.
- W2020133147 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19810495" @default.
- W2020133147 hasPublicationYear "2009" @default.
- W2020133147 type Work @default.
- W2020133147 sameAs 2020133147 @default.
- W2020133147 citedByCount "183" @default.
- W2020133147 countsByYear W20201331472012 @default.
- W2020133147 countsByYear W20201331472013 @default.
- W2020133147 countsByYear W20201331472014 @default.
- W2020133147 countsByYear W20201331472015 @default.
- W2020133147 countsByYear W20201331472016 @default.
- W2020133147 countsByYear W20201331472017 @default.
- W2020133147 countsByYear W20201331472018 @default.
- W2020133147 countsByYear W20201331472019 @default.
- W2020133147 countsByYear W20201331472020 @default.
- W2020133147 countsByYear W20201331472021 @default.
- W2020133147 countsByYear W20201331472022 @default.
- W2020133147 countsByYear W20201331472023 @default.
- W2020133147 crossrefType "journal-article" @default.
- W2020133147 hasAuthorship W2020133147A5006854308 @default.
- W2020133147 hasAuthorship W2020133147A5011527598 @default.
- W2020133147 hasAuthorship W2020133147A5037389227 @default.
- W2020133147 hasBestOaLocation W20201331472 @default.
- W2020133147 hasConcept C103278499 @default.
- W2020133147 hasConcept C10390562 @default.
- W2020133147 hasConcept C115961682 @default.
- W2020133147 hasConcept C121332964 @default.
- W2020133147 hasConcept C126322002 @default.
- W2020133147 hasConcept C126838900 @default.
- W2020133147 hasConcept C134306372 @default.
- W2020133147 hasConcept C154945302 @default.
- W2020133147 hasConcept C157202957 @default.
- W2020133147 hasConcept C15945459 @default.
- W2020133147 hasConcept C166704113 @default.
- W2020133147 hasConcept C187954543 @default.
- W2020133147 hasConcept C27101514 @default.
- W2020133147 hasConcept C2777714996 @default.
- W2020133147 hasConcept C33923547 @default.
- W2020133147 hasConcept C41008148 @default.
- W2020133147 hasConcept C544519230 @default.
- W2020133147 hasConcept C71924100 @default.
- W2020133147 hasConcept C97355855 @default.
- W2020133147 hasConceptScore W2020133147C103278499 @default.
- W2020133147 hasConceptScore W2020133147C10390562 @default.
- W2020133147 hasConceptScore W2020133147C115961682 @default.
- W2020133147 hasConceptScore W2020133147C121332964 @default.
- W2020133147 hasConceptScore W2020133147C126322002 @default.