Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020135355> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2020135355 endingPage "510" @default.
- W2020135355 startingPage "505" @default.
- W2020135355 abstract "A novel model-independent approach to analyze pharmacokinetic (PK)-pharmacodynamic (PD) data using artificial neural networks (ANNs) is presented. ANNs are versatile computational tools that possess the attributes of adaptive learning and self-organization. The emulative ability of neural networks is evaluated with simulated PK-PD data, and the power of ANNs to extrapolate the acquired knowledge is investigated. ANNs of one architecture are shown to be flexible enough to accurately predict PD profiles for a wide variety of PK-PD relationships (e.g., effect compartment linked to the central or peripheral compartment and indirect response models). Also, an example is given of the ability of ANNs to accurately predict PD profiles without requiring any information regarding the active metabolite. Because structural details are not required, ANNs exhibit a clear advantage over conventional model-dependent methods. ANNs are proved to be robust toward error in the data and perturbations in the initial estimates. Moreover, ANNs were shown to handle sparse data well. Neural networks are emerging as promising tools in the field of drug discovery and development." @default.
- W2020135355 created "2016-06-24" @default.
- W2020135355 creator A5033834182 @default.
- W2020135355 creator A5083885025 @default.
- W2020135355 date "1996-05-01" @default.
- W2020135355 modified "2023-10-16" @default.
- W2020135355 title "Artificial Neural Networks As a Novel Approach to Integrated Pharmacokinetic—Pharmacodynamic Analysis" @default.
- W2020135355 cites W101894548 @default.
- W2020135355 cites W110283499 @default.
- W2020135355 cites W123389327 @default.
- W2020135355 cites W1556911583 @default.
- W2020135355 cites W1985557517 @default.
- W2020135355 cites W2005905844 @default.
- W2020135355 cites W2012293219 @default.
- W2020135355 cites W2015577757 @default.
- W2020135355 cites W2045065906 @default.
- W2020135355 cites W2070174327 @default.
- W2020135355 cites W2078380224 @default.
- W2020135355 cites W2088865403 @default.
- W2020135355 cites W2114891723 @default.
- W2020135355 cites W2156923785 @default.
- W2020135355 cites W2324227497 @default.
- W2020135355 cites W2952363531 @default.
- W2020135355 doi "https://doi.org/10.1021/js950433d" @default.
- W2020135355 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8742942" @default.
- W2020135355 hasPublicationYear "1996" @default.
- W2020135355 type Work @default.
- W2020135355 sameAs 2020135355 @default.
- W2020135355 citedByCount "57" @default.
- W2020135355 countsByYear W20201353552012 @default.
- W2020135355 countsByYear W20201353552013 @default.
- W2020135355 countsByYear W20201353552014 @default.
- W2020135355 countsByYear W20201353552015 @default.
- W2020135355 countsByYear W20201353552016 @default.
- W2020135355 countsByYear W20201353552017 @default.
- W2020135355 countsByYear W20201353552018 @default.
- W2020135355 countsByYear W20201353552019 @default.
- W2020135355 countsByYear W20201353552020 @default.
- W2020135355 countsByYear W20201353552021 @default.
- W2020135355 countsByYear W20201353552022 @default.
- W2020135355 countsByYear W20201353552023 @default.
- W2020135355 crossrefType "journal-article" @default.
- W2020135355 hasAuthorship W2020135355A5033834182 @default.
- W2020135355 hasAuthorship W2020135355A5083885025 @default.
- W2020135355 hasConcept C119857082 @default.
- W2020135355 hasConcept C124101348 @default.
- W2020135355 hasConcept C154945302 @default.
- W2020135355 hasConcept C202444582 @default.
- W2020135355 hasConcept C33923547 @default.
- W2020135355 hasConcept C41008148 @default.
- W2020135355 hasConcept C50644808 @default.
- W2020135355 hasConcept C9652623 @default.
- W2020135355 hasConceptScore W2020135355C119857082 @default.
- W2020135355 hasConceptScore W2020135355C124101348 @default.
- W2020135355 hasConceptScore W2020135355C154945302 @default.
- W2020135355 hasConceptScore W2020135355C202444582 @default.
- W2020135355 hasConceptScore W2020135355C33923547 @default.
- W2020135355 hasConceptScore W2020135355C41008148 @default.
- W2020135355 hasConceptScore W2020135355C50644808 @default.
- W2020135355 hasConceptScore W2020135355C9652623 @default.
- W2020135355 hasIssue "5" @default.
- W2020135355 hasLocation W20201353551 @default.
- W2020135355 hasLocation W20201353552 @default.
- W2020135355 hasOpenAccess W2020135355 @default.
- W2020135355 hasPrimaryLocation W20201353551 @default.
- W2020135355 hasRelatedWork W2386387936 @default.
- W2020135355 hasRelatedWork W2961085424 @default.
- W2020135355 hasRelatedWork W3046775127 @default.
- W2020135355 hasRelatedWork W3170094116 @default.
- W2020135355 hasRelatedWork W4205958290 @default.
- W2020135355 hasRelatedWork W4285260836 @default.
- W2020135355 hasRelatedWork W4286629047 @default.
- W2020135355 hasRelatedWork W4306321456 @default.
- W2020135355 hasRelatedWork W4306674287 @default.
- W2020135355 hasRelatedWork W4224009465 @default.
- W2020135355 hasVolume "85" @default.
- W2020135355 isParatext "false" @default.
- W2020135355 isRetracted "false" @default.
- W2020135355 magId "2020135355" @default.
- W2020135355 workType "article" @default.