Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020147658> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2020147658 abstract "Visual data with appropriate processing has very important information for many robotic applications. Usually, people use digital computer to do the image processing, but for complex or copious algorithms, due to the architecture of present CPU-based computing system, it is very time consuming and resource wasting to do these kinds of process. In this paper, we focus on the crucial case - image algorithms with multi-layer processes. In this kind of algorithms, the following process always need to wait the result from the previous step and access the memory very frequently, which cause the timing delay and resource grabbing in general CPU-based system. In order to solve this problem, first we go deep into the data flow in multi-layer image processing. We observe that it has many parallel and pipeline properties without waiting for some unnecessary delay, and fortunately, these properties exactly match with the characteristics of hardware design. For this reason, we propose a novel hardware architecture called visual pipeline to overcome these problems. The combination of the concepts from parallel and pipeline properties in hardware design are used, and finally we use FPGA to implement our architecture. To verify our hardware design, we use multi-scale Harris corner detector as the example, which is also a multi-layer process. Finally, we can show the result running in real-time of multi-layer image processing." @default.
- W2020147658 created "2016-06-24" @default.
- W2020147658 creator A5028455171 @default.
- W2020147658 creator A5071708701 @default.
- W2020147658 date "2007-01-01" @default.
- W2020147658 modified "2023-10-16" @default.
- W2020147658 title "Hardware Architecture to Realize Multi-layer Image Processing in Real-time" @default.
- W2020147658 cites W1561725608 @default.
- W2020147658 cites W1964555285 @default.
- W2020147658 cites W2107546753 @default.
- W2020147658 cites W2109200236 @default.
- W2020147658 cites W2109999347 @default.
- W2020147658 cites W2111308925 @default.
- W2020147658 cites W2113243634 @default.
- W2020147658 cites W2128008266 @default.
- W2020147658 cites W2132103241 @default.
- W2020147658 cites W2135192563 @default.
- W2020147658 cites W2135442895 @default.
- W2020147658 cites W2139886987 @default.
- W2020147658 cites W2151103935 @default.
- W2020147658 cites W2172188317 @default.
- W2020147658 doi "https://doi.org/10.1109/iecon.2007.4460387" @default.
- W2020147658 hasPublicationYear "2007" @default.
- W2020147658 type Work @default.
- W2020147658 sameAs 2020147658 @default.
- W2020147658 citedByCount "2" @default.
- W2020147658 countsByYear W20201476582013 @default.
- W2020147658 crossrefType "proceedings-article" @default.
- W2020147658 hasAuthorship W2020147658A5028455171 @default.
- W2020147658 hasAuthorship W2020147658A5071708701 @default.
- W2020147658 hasBestOaLocation W20201476582 @default.
- W2020147658 hasConcept C104317675 @default.
- W2020147658 hasConcept C111919701 @default.
- W2020147658 hasConcept C115961682 @default.
- W2020147658 hasConcept C118524514 @default.
- W2020147658 hasConcept C120665830 @default.
- W2020147658 hasConcept C121332964 @default.
- W2020147658 hasConcept C149635348 @default.
- W2020147658 hasConcept C154945302 @default.
- W2020147658 hasConcept C178790620 @default.
- W2020147658 hasConcept C185592680 @default.
- W2020147658 hasConcept C192209626 @default.
- W2020147658 hasConcept C2777904410 @default.
- W2020147658 hasConcept C2779227376 @default.
- W2020147658 hasConcept C41008148 @default.
- W2020147658 hasConcept C42935608 @default.
- W2020147658 hasConcept C43521106 @default.
- W2020147658 hasConcept C65232700 @default.
- W2020147658 hasConcept C9390403 @default.
- W2020147658 hasConcept C9417928 @default.
- W2020147658 hasConcept C98045186 @default.
- W2020147658 hasConceptScore W2020147658C104317675 @default.
- W2020147658 hasConceptScore W2020147658C111919701 @default.
- W2020147658 hasConceptScore W2020147658C115961682 @default.
- W2020147658 hasConceptScore W2020147658C118524514 @default.
- W2020147658 hasConceptScore W2020147658C120665830 @default.
- W2020147658 hasConceptScore W2020147658C121332964 @default.
- W2020147658 hasConceptScore W2020147658C149635348 @default.
- W2020147658 hasConceptScore W2020147658C154945302 @default.
- W2020147658 hasConceptScore W2020147658C178790620 @default.
- W2020147658 hasConceptScore W2020147658C185592680 @default.
- W2020147658 hasConceptScore W2020147658C192209626 @default.
- W2020147658 hasConceptScore W2020147658C2777904410 @default.
- W2020147658 hasConceptScore W2020147658C2779227376 @default.
- W2020147658 hasConceptScore W2020147658C41008148 @default.
- W2020147658 hasConceptScore W2020147658C42935608 @default.
- W2020147658 hasConceptScore W2020147658C43521106 @default.
- W2020147658 hasConceptScore W2020147658C65232700 @default.
- W2020147658 hasConceptScore W2020147658C9390403 @default.
- W2020147658 hasConceptScore W2020147658C9417928 @default.
- W2020147658 hasConceptScore W2020147658C98045186 @default.
- W2020147658 hasLocation W20201476581 @default.
- W2020147658 hasLocation W20201476582 @default.
- W2020147658 hasOpenAccess W2020147658 @default.
- W2020147658 hasPrimaryLocation W20201476581 @default.
- W2020147658 hasRelatedWork W1591122270 @default.
- W2020147658 hasRelatedWork W1989237359 @default.
- W2020147658 hasRelatedWork W2359105433 @default.
- W2020147658 hasRelatedWork W2362272581 @default.
- W2020147658 hasRelatedWork W2364531466 @default.
- W2020147658 hasRelatedWork W2372158718 @default.
- W2020147658 hasRelatedWork W2383828164 @default.
- W2020147658 hasRelatedWork W25109758 @default.
- W2020147658 hasRelatedWork W2610553764 @default.
- W2020147658 hasRelatedWork W3107155983 @default.
- W2020147658 isParatext "false" @default.
- W2020147658 isRetracted "false" @default.
- W2020147658 magId "2020147658" @default.
- W2020147658 workType "article" @default.