Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020149116> ?p ?o ?g. }
- W2020149116 endingPage "95" @default.
- W2020149116 startingPage "84" @default.
- W2020149116 abstract "Abstract In this paper, an ensemble of radial basis function neural networks (RBFNs) optimized by differential evolution (DE) (DE- RBFNs) is presented for identification of epileptic seizure by analyzing the electroencephalography (EEG) signal. The ensemble is based on the bagging approach and the base learner is DE-RBFNs. The EEGs are decomposed with wavelet transform into different sub-bands and some statistical information is extracted from the wavelet coefficients to supply as the input to ensemble of DE-RBFNs. A benchmark publicly available dataset is used to evaluate the proposed method. The classification results confirm that the proposed ensemble of DE-RBFNs has greater potentiality to identify the epileptic disorders." @default.
- W2020149116 created "2016-06-24" @default.
- W2020149116 creator A5001882647 @default.
- W2020149116 creator A5011178657 @default.
- W2020149116 creator A5071195676 @default.
- W2020149116 date "2013-01-01" @default.
- W2020149116 modified "2023-09-25" @default.
- W2020149116 title "Epileptic Seizure Identification from Electroencephalography Signal Using DE-RBFNs Ensemble" @default.
- W2020149116 cites W1605688901 @default.
- W2020149116 cites W1968182870 @default.
- W2020149116 cites W1969675008 @default.
- W2020149116 cites W1989801867 @default.
- W2020149116 cites W1989944217 @default.
- W2020149116 cites W1993922907 @default.
- W2020149116 cites W1995165836 @default.
- W2020149116 cites W1996183177 @default.
- W2020149116 cites W1999771120 @default.
- W2020149116 cites W2003411213 @default.
- W2020149116 cites W2022599380 @default.
- W2020149116 cites W2024952598 @default.
- W2020149116 cites W2030215171 @default.
- W2020149116 cites W2032884154 @default.
- W2020149116 cites W2053744708 @default.
- W2020149116 cites W2058722442 @default.
- W2020149116 cites W2081700482 @default.
- W2020149116 cites W2081895431 @default.
- W2020149116 cites W2083062762 @default.
- W2020149116 cites W2092634008 @default.
- W2020149116 cites W2094538992 @default.
- W2020149116 cites W2098844365 @default.
- W2020149116 cites W2103082096 @default.
- W2020149116 cites W2113442785 @default.
- W2020149116 cites W2119234283 @default.
- W2020149116 cites W2122565585 @default.
- W2020149116 cites W2129648589 @default.
- W2020149116 cites W2133441707 @default.
- W2020149116 cites W2140123013 @default.
- W2020149116 cites W2153378539 @default.
- W2020149116 cites W2156194072 @default.
- W2020149116 cites W2156662050 @default.
- W2020149116 cites W2169143828 @default.
- W2020149116 cites W2171277043 @default.
- W2020149116 doi "https://doi.org/10.1016/j.procs.2013.10.012" @default.
- W2020149116 hasPublicationYear "2013" @default.
- W2020149116 type Work @default.
- W2020149116 sameAs 2020149116 @default.
- W2020149116 citedByCount "19" @default.
- W2020149116 countsByYear W20201491162015 @default.
- W2020149116 countsByYear W20201491162016 @default.
- W2020149116 countsByYear W20201491162017 @default.
- W2020149116 countsByYear W20201491162018 @default.
- W2020149116 countsByYear W20201491162019 @default.
- W2020149116 countsByYear W20201491162020 @default.
- W2020149116 countsByYear W20201491162021 @default.
- W2020149116 countsByYear W20201491162023 @default.
- W2020149116 crossrefType "journal-article" @default.
- W2020149116 hasAuthorship W2020149116A5001882647 @default.
- W2020149116 hasAuthorship W2020149116A5011178657 @default.
- W2020149116 hasAuthorship W2020149116A5071195676 @default.
- W2020149116 hasBestOaLocation W20201491161 @default.
- W2020149116 hasConcept C116834253 @default.
- W2020149116 hasConcept C119857082 @default.
- W2020149116 hasConcept C153180895 @default.
- W2020149116 hasConcept C154945302 @default.
- W2020149116 hasConcept C15744967 @default.
- W2020149116 hasConcept C169760540 @default.
- W2020149116 hasConcept C199360897 @default.
- W2020149116 hasConcept C2778186239 @default.
- W2020149116 hasConcept C2779334592 @default.
- W2020149116 hasConcept C2779843651 @default.
- W2020149116 hasConcept C28490314 @default.
- W2020149116 hasConcept C41008148 @default.
- W2020149116 hasConcept C522805319 @default.
- W2020149116 hasConcept C59822182 @default.
- W2020149116 hasConcept C86803240 @default.
- W2020149116 hasConceptScore W2020149116C116834253 @default.
- W2020149116 hasConceptScore W2020149116C119857082 @default.
- W2020149116 hasConceptScore W2020149116C153180895 @default.
- W2020149116 hasConceptScore W2020149116C154945302 @default.
- W2020149116 hasConceptScore W2020149116C15744967 @default.
- W2020149116 hasConceptScore W2020149116C169760540 @default.
- W2020149116 hasConceptScore W2020149116C199360897 @default.
- W2020149116 hasConceptScore W2020149116C2778186239 @default.
- W2020149116 hasConceptScore W2020149116C2779334592 @default.
- W2020149116 hasConceptScore W2020149116C2779843651 @default.
- W2020149116 hasConceptScore W2020149116C28490314 @default.
- W2020149116 hasConceptScore W2020149116C41008148 @default.
- W2020149116 hasConceptScore W2020149116C522805319 @default.
- W2020149116 hasConceptScore W2020149116C59822182 @default.
- W2020149116 hasConceptScore W2020149116C86803240 @default.
- W2020149116 hasFunder F4320322120 @default.
- W2020149116 hasFunder F4320322349 @default.
- W2020149116 hasLocation W20201491161 @default.
- W2020149116 hasOpenAccess W2020149116 @default.
- W2020149116 hasPrimaryLocation W20201491161 @default.
- W2020149116 hasRelatedWork W1986338346 @default.
- W2020149116 hasRelatedWork W2131423920 @default.
- W2020149116 hasRelatedWork W2188369448 @default.