Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020150461> ?p ?o ?g. }
- W2020150461 endingPage "1513" @default.
- W2020150461 startingPage "1505" @default.
- W2020150461 abstract "Progressive algorithms are widely used heuristics for the production of alignments among multiple nucleic-acid or protein sequences. Probabilistic approaches providing measures of global and/or local reliability of individual solutions would constitute valuable developments.We present here a new method for multiple sequence alignment that combines an HMM approach, a progressive alignment algorithm, and a probabilistic evolution model describing the character substitution process. Our method works by iterating pairwise alignments according to a guide tree and defining each ancestral sequence from the pairwise alignment of its child nodes, thus, progressively constructing a multiple alignment. Our method allows for the computation of each column minimum posterior probability and we show that this value correlates with the correctness of the result, hence, providing an efficient mean by which unreliably aligned columns can be filtered out from a multiple alignment." @default.
- W2020150461 created "2016-06-24" @default.
- W2020150461 creator A5000878403 @default.
- W2020150461 creator A5053385433 @default.
- W2020150461 date "2003-08-12" @default.
- W2020150461 modified "2023-09-26" @default.
- W2020150461 title "A hidden Markov model for progressive multiple alignment" @default.
- W2020150461 cites W1579352620 @default.
- W2020150461 cites W1968256798 @default.
- W2020150461 cites W1969153299 @default.
- W2020150461 cites W1969620339 @default.
- W2020150461 cites W1969761972 @default.
- W2020150461 cites W1971912858 @default.
- W2020150461 cites W1991133427 @default.
- W2020150461 cites W1995988830 @default.
- W2020150461 cites W2002805476 @default.
- W2020150461 cites W2009570821 @default.
- W2020150461 cites W2021839440 @default.
- W2020150461 cites W2062018285 @default.
- W2020150461 cites W2068448872 @default.
- W2020150461 cites W2074231493 @default.
- W2020150461 cites W2092979861 @default.
- W2020150461 cites W2097386339 @default.
- W2020150461 cites W2097706568 @default.
- W2020150461 cites W2106882534 @default.
- W2020150461 cites W2114122189 @default.
- W2020150461 cites W2125838338 @default.
- W2020150461 cites W2140244239 @default.
- W2020150461 cites W2141411672 @default.
- W2020150461 cites W2163860567 @default.
- W2020150461 cites W3150945973 @default.
- W2020150461 doi "https://doi.org/10.1093/bioinformatics/btg193" @default.
- W2020150461 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12912831" @default.
- W2020150461 hasPublicationYear "2003" @default.
- W2020150461 type Work @default.
- W2020150461 sameAs 2020150461 @default.
- W2020150461 citedByCount "159" @default.
- W2020150461 countsByYear W20201504612012 @default.
- W2020150461 countsByYear W20201504612013 @default.
- W2020150461 countsByYear W20201504612014 @default.
- W2020150461 countsByYear W20201504612015 @default.
- W2020150461 countsByYear W20201504612016 @default.
- W2020150461 countsByYear W20201504612017 @default.
- W2020150461 countsByYear W20201504612018 @default.
- W2020150461 countsByYear W20201504612019 @default.
- W2020150461 countsByYear W20201504612020 @default.
- W2020150461 countsByYear W20201504612021 @default.
- W2020150461 countsByYear W20201504612022 @default.
- W2020150461 crossrefType "journal-article" @default.
- W2020150461 hasAuthorship W2020150461A5000878403 @default.
- W2020150461 hasAuthorship W2020150461A5053385433 @default.
- W2020150461 hasBestOaLocation W20201504611 @default.
- W2020150461 hasConcept C104317684 @default.
- W2020150461 hasConcept C111919701 @default.
- W2020150461 hasConcept C11413529 @default.
- W2020150461 hasConcept C119857082 @default.
- W2020150461 hasConcept C127705205 @default.
- W2020150461 hasConcept C154945302 @default.
- W2020150461 hasConcept C167625842 @default.
- W2020150461 hasConcept C180384323 @default.
- W2020150461 hasConcept C184898388 @default.
- W2020150461 hasConcept C185592680 @default.
- W2020150461 hasConcept C23224414 @default.
- W2020150461 hasConcept C2778112365 @default.
- W2020150461 hasConcept C41008148 @default.
- W2020150461 hasConcept C45374587 @default.
- W2020150461 hasConcept C45484198 @default.
- W2020150461 hasConcept C4668613 @default.
- W2020150461 hasConcept C49937458 @default.
- W2020150461 hasConcept C54355233 @default.
- W2020150461 hasConcept C55439883 @default.
- W2020150461 hasConcept C55493867 @default.
- W2020150461 hasConcept C72802188 @default.
- W2020150461 hasConcept C86803240 @default.
- W2020150461 hasConcept C88031987 @default.
- W2020150461 hasConcept C98763669 @default.
- W2020150461 hasConceptScore W2020150461C104317684 @default.
- W2020150461 hasConceptScore W2020150461C111919701 @default.
- W2020150461 hasConceptScore W2020150461C11413529 @default.
- W2020150461 hasConceptScore W2020150461C119857082 @default.
- W2020150461 hasConceptScore W2020150461C127705205 @default.
- W2020150461 hasConceptScore W2020150461C154945302 @default.
- W2020150461 hasConceptScore W2020150461C167625842 @default.
- W2020150461 hasConceptScore W2020150461C180384323 @default.
- W2020150461 hasConceptScore W2020150461C184898388 @default.
- W2020150461 hasConceptScore W2020150461C185592680 @default.
- W2020150461 hasConceptScore W2020150461C23224414 @default.
- W2020150461 hasConceptScore W2020150461C2778112365 @default.
- W2020150461 hasConceptScore W2020150461C41008148 @default.
- W2020150461 hasConceptScore W2020150461C45374587 @default.
- W2020150461 hasConceptScore W2020150461C45484198 @default.
- W2020150461 hasConceptScore W2020150461C4668613 @default.
- W2020150461 hasConceptScore W2020150461C49937458 @default.
- W2020150461 hasConceptScore W2020150461C54355233 @default.
- W2020150461 hasConceptScore W2020150461C55439883 @default.
- W2020150461 hasConceptScore W2020150461C55493867 @default.
- W2020150461 hasConceptScore W2020150461C72802188 @default.
- W2020150461 hasConceptScore W2020150461C86803240 @default.