Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020152488> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2020152488 abstract "Underwater sensor networks (UWSNs) face specific challenges due to the transmission properties in the underwater environment. Radio waves propagate only for short distances under water, and acoustic transmissions have limited data rate and relatively high latency. One of the possible solutions to these challenges involves the use of autonomous underwater vehicles (AUVs) to visit and offload data from the individual sensor nodes. We consider an underwater sensor network visually monitoring an offshore oil platform for hazards such as oil spills from pipes and blowups. To each observation chunk (image or video) we attach a numerical value of information (VoI). This value monotonically decreases in time with a speeed which depends on the urgency of the captured data. An AUV visits different nodes along a specific path and collects data to be transmitted to the customer. Our objective is to develop path planners for the movement of the AUV which maximizes the total VoI collected. We consider three different path planners: the lawn mower path planner (LPP), the greedy planner (GPP) and the random planner (RPP). In a simulation study we compare the total VoI collected by these algorithms and show that the GPP outperforms the other two proposed algorithms on the studied scenarios." @default.
- W2020152488 created "2016-06-24" @default.
- W2020152488 creator A5016691144 @default.
- W2020152488 creator A5019839903 @default.
- W2020152488 creator A5042166639 @default.
- W2020152488 creator A5068888332 @default.
- W2020152488 date "2014-09-01" @default.
- W2020152488 modified "2023-09-27" @default.
- W2020152488 title "Greedy path planning for maximizing value of information in underwater sensor networks" @default.
- W2020152488 cites W1952157068 @default.
- W2020152488 cites W1959961483 @default.
- W2020152488 cites W2044214237 @default.
- W2020152488 cites W2051626883 @default.
- W2020152488 cites W2059260784 @default.
- W2020152488 cites W2059966841 @default.
- W2020152488 cites W2091579662 @default.
- W2020152488 cites W2112724282 @default.
- W2020152488 cites W2113023534 @default.
- W2020152488 cites W2137994043 @default.
- W2020152488 cites W2162549424 @default.
- W2020152488 doi "https://doi.org/10.1109/lcnw.2014.6927710" @default.
- W2020152488 hasPublicationYear "2014" @default.
- W2020152488 type Work @default.
- W2020152488 sameAs 2020152488 @default.
- W2020152488 citedByCount "16" @default.
- W2020152488 countsByYear W20201524882015 @default.
- W2020152488 countsByYear W20201524882016 @default.
- W2020152488 countsByYear W20201524882017 @default.
- W2020152488 countsByYear W20201524882018 @default.
- W2020152488 countsByYear W20201524882019 @default.
- W2020152488 countsByYear W20201524882021 @default.
- W2020152488 countsByYear W20201524882022 @default.
- W2020152488 crossrefType "proceedings-article" @default.
- W2020152488 hasAuthorship W2020152488A5016691144 @default.
- W2020152488 hasAuthorship W2020152488A5019839903 @default.
- W2020152488 hasAuthorship W2020152488A5042166639 @default.
- W2020152488 hasAuthorship W2020152488A5068888332 @default.
- W2020152488 hasBestOaLocation W20201524882 @default.
- W2020152488 hasConcept C111368507 @default.
- W2020152488 hasConcept C127313418 @default.
- W2020152488 hasConcept C154945302 @default.
- W2020152488 hasConcept C24590314 @default.
- W2020152488 hasConcept C2776999362 @default.
- W2020152488 hasConcept C2777735758 @default.
- W2020152488 hasConcept C31258907 @default.
- W2020152488 hasConcept C41008148 @default.
- W2020152488 hasConcept C44154836 @default.
- W2020152488 hasConcept C79403827 @default.
- W2020152488 hasConcept C81074085 @default.
- W2020152488 hasConcept C90509273 @default.
- W2020152488 hasConcept C92424840 @default.
- W2020152488 hasConcept C98083399 @default.
- W2020152488 hasConceptScore W2020152488C111368507 @default.
- W2020152488 hasConceptScore W2020152488C127313418 @default.
- W2020152488 hasConceptScore W2020152488C154945302 @default.
- W2020152488 hasConceptScore W2020152488C24590314 @default.
- W2020152488 hasConceptScore W2020152488C2776999362 @default.
- W2020152488 hasConceptScore W2020152488C2777735758 @default.
- W2020152488 hasConceptScore W2020152488C31258907 @default.
- W2020152488 hasConceptScore W2020152488C41008148 @default.
- W2020152488 hasConceptScore W2020152488C44154836 @default.
- W2020152488 hasConceptScore W2020152488C79403827 @default.
- W2020152488 hasConceptScore W2020152488C81074085 @default.
- W2020152488 hasConceptScore W2020152488C90509273 @default.
- W2020152488 hasConceptScore W2020152488C92424840 @default.
- W2020152488 hasConceptScore W2020152488C98083399 @default.
- W2020152488 hasLocation W20201524881 @default.
- W2020152488 hasLocation W20201524882 @default.
- W2020152488 hasOpenAccess W2020152488 @default.
- W2020152488 hasPrimaryLocation W20201524881 @default.
- W2020152488 hasRelatedWork W1967495730 @default.
- W2020152488 hasRelatedWork W2020152488 @default.
- W2020152488 hasRelatedWork W2046356179 @default.
- W2020152488 hasRelatedWork W2060743914 @default.
- W2020152488 hasRelatedWork W2128280661 @default.
- W2020152488 hasRelatedWork W2155467318 @default.
- W2020152488 hasRelatedWork W2171066421 @default.
- W2020152488 hasRelatedWork W3212692130 @default.
- W2020152488 hasRelatedWork W4321649120 @default.
- W2020152488 hasRelatedWork W4383109571 @default.
- W2020152488 isParatext "false" @default.
- W2020152488 isRetracted "false" @default.
- W2020152488 magId "2020152488" @default.
- W2020152488 workType "article" @default.