Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020167497> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2020167497 endingPage "S7" @default.
- W2020167497 startingPage "S7" @default.
- W2020167497 abstract "suppression weighted (T2FS) sequences. The cohort had a median followup period of 33 months (range: 9-70) during which 19 patients developed lung metastases. Forty-one different textures (e.g., homogeneity, coarseness, large zone emphasis, etc.) were extracted from the tumor region (excluding surrounding edema) of the separate (FDG-PET, T1 and T2FS) and fused (FDG-PET/T1 and FDG-PET/T2FS) PET/MR scans. Fusion of the scans was implemented using the wavelet transform. The construction of prediction models from the combination of different textural features was then performed using logistic regression with feature set reduction, forward feature selection, and correction for small sample size effect. The performance of the resulting models for lung metastases prediction was evaluated using the area under the receiver operating characteristic curve (AUC) on bootstrap resampling in order to maximize their generalizability to out-of-sample STS population. Results: Overall, textures extracted from fused scans outperformed those from separate scans for the prediction of lung metastases by 10%. The best performance was found using a multivariable model with the following 3 texture parameters extracted from fused scans: small zone emphasis, zonesize variance and high gray-level zone emphasis. The average prediction performance of this model using 1000 bootstrapping testing sets yielded an AUC of 0.978 0.001, with a sensitivity and specificity of 0.909 0.006 and 0.899 0.004, respectively. Finally, the uncertainty of the texture model due to contouring variations was analyzed to be 15% using two different contours: one including the visible edema in the vicinity of the tumors, and one excluding it. Conclusions: Our results demonstrate that textural features extracted from fused FDG-PET/MR scans can be used to assess lung metastasis risk at diagnosis of STS. Accurate risk assessment could improve patient outcomes by allowing better treatment adaptation. For future work, we intend to generalize the methodology developed in this study to other cancer types and clinical endpoints. Author Disclosure: M. Vallieres: None. C.R. Freeman: None. S. Skamene: None. I. El Naqa: None." @default.
- W2020167497 created "2016-06-24" @default.
- W2020167497 creator A5001753216 @default.
- W2020167497 creator A5001873561 @default.
- W2020167497 creator A5004965117 @default.
- W2020167497 creator A5036054930 @default.
- W2020167497 creator A5055897112 @default.
- W2020167497 creator A5061702922 @default.
- W2020167497 date "2014-09-01" @default.
- W2020167497 modified "2023-09-25" @default.
- W2020167497 title "Improving The Prognostic Value Of FDG-PET For NSCLC Patients Treated With SABR Using Advanced Computational Modeling" @default.
- W2020167497 doi "https://doi.org/10.1016/j.ijrobp.2014.05.081" @default.
- W2020167497 hasPublicationYear "2014" @default.
- W2020167497 type Work @default.
- W2020167497 sameAs 2020167497 @default.
- W2020167497 citedByCount "0" @default.
- W2020167497 crossrefType "journal-article" @default.
- W2020167497 hasAuthorship W2020167497A5001753216 @default.
- W2020167497 hasAuthorship W2020167497A5001873561 @default.
- W2020167497 hasAuthorship W2020167497A5004965117 @default.
- W2020167497 hasAuthorship W2020167497A5036054930 @default.
- W2020167497 hasAuthorship W2020167497A5055897112 @default.
- W2020167497 hasAuthorship W2020167497A5061702922 @default.
- W2020167497 hasConcept C121684516 @default.
- W2020167497 hasConcept C126322002 @default.
- W2020167497 hasConcept C126838900 @default.
- W2020167497 hasConcept C148483581 @default.
- W2020167497 hasConcept C149782125 @default.
- W2020167497 hasConcept C153180895 @default.
- W2020167497 hasConcept C154945302 @default.
- W2020167497 hasConcept C187625094 @default.
- W2020167497 hasConcept C2779104521 @default.
- W2020167497 hasConcept C2908647359 @default.
- W2020167497 hasConcept C2989005 @default.
- W2020167497 hasConcept C33923547 @default.
- W2020167497 hasConcept C41008148 @default.
- W2020167497 hasConcept C58471807 @default.
- W2020167497 hasConcept C71924100 @default.
- W2020167497 hasConcept C85393063 @default.
- W2020167497 hasConcept C91602232 @default.
- W2020167497 hasConcept C99454951 @default.
- W2020167497 hasConceptScore W2020167497C121684516 @default.
- W2020167497 hasConceptScore W2020167497C126322002 @default.
- W2020167497 hasConceptScore W2020167497C126838900 @default.
- W2020167497 hasConceptScore W2020167497C148483581 @default.
- W2020167497 hasConceptScore W2020167497C149782125 @default.
- W2020167497 hasConceptScore W2020167497C153180895 @default.
- W2020167497 hasConceptScore W2020167497C154945302 @default.
- W2020167497 hasConceptScore W2020167497C187625094 @default.
- W2020167497 hasConceptScore W2020167497C2779104521 @default.
- W2020167497 hasConceptScore W2020167497C2908647359 @default.
- W2020167497 hasConceptScore W2020167497C2989005 @default.
- W2020167497 hasConceptScore W2020167497C33923547 @default.
- W2020167497 hasConceptScore W2020167497C41008148 @default.
- W2020167497 hasConceptScore W2020167497C58471807 @default.
- W2020167497 hasConceptScore W2020167497C71924100 @default.
- W2020167497 hasConceptScore W2020167497C85393063 @default.
- W2020167497 hasConceptScore W2020167497C91602232 @default.
- W2020167497 hasConceptScore W2020167497C99454951 @default.
- W2020167497 hasIssue "1" @default.
- W2020167497 hasLocation W20201674971 @default.
- W2020167497 hasOpenAccess W2020167497 @default.
- W2020167497 hasPrimaryLocation W20201674971 @default.
- W2020167497 hasRelatedWork W1005978088 @default.
- W2020167497 hasRelatedWork W1038274942 @default.
- W2020167497 hasRelatedWork W1179679491 @default.
- W2020167497 hasRelatedWork W157213454 @default.
- W2020167497 hasRelatedWork W1976244785 @default.
- W2020167497 hasRelatedWork W1994163152 @default.
- W2020167497 hasRelatedWork W1994717090 @default.
- W2020167497 hasRelatedWork W2059939049 @default.
- W2020167497 hasRelatedWork W2099698084 @default.
- W2020167497 hasRelatedWork W2103851997 @default.
- W2020167497 hasRelatedWork W2739046037 @default.
- W2020167497 hasRelatedWork W2899393783 @default.
- W2020167497 hasRelatedWork W2901521865 @default.
- W2020167497 hasRelatedWork W2972313349 @default.
- W2020167497 hasRelatedWork W2982589596 @default.
- W2020167497 hasRelatedWork W2982760365 @default.
- W2020167497 hasRelatedWork W2996500840 @default.
- W2020167497 hasRelatedWork W3117519620 @default.
- W2020167497 hasRelatedWork W3122128302 @default.
- W2020167497 hasRelatedWork W3205948795 @default.
- W2020167497 hasVolume "90" @default.
- W2020167497 isParatext "false" @default.
- W2020167497 isRetracted "false" @default.
- W2020167497 magId "2020167497" @default.
- W2020167497 workType "article" @default.