Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020180897> ?p ?o ?g. }
- W2020180897 endingPage "16" @default.
- W2020180897 startingPage "16" @default.
- W2020180897 abstract "This article presents a generic framework for the representation and deformation of level set surfaces at extreme resolutions. The framework is composed of two modules that each utilize optimized and application specific algorithms: 1) A fast out-of-core data management scheme that allows for resolutions of the deforming geometry limited only by the available disk space as opposed to memory, and 2) compact and fast compression strategies that reduce both offline storage requirements and online memory footprints during simulation. Out-of-core and compression techniques have been applied to a wide range of computer graphics problems in recent years, but this article is the first to apply it in the context of level set and fluid simulations . Our framework is generic and flexible in the sense that the two modules can transparently be integrated, separately or in any combination, into existing level set and fluid simulation software based on recently proposed narrow band data structures like the DT-Grid of Nielsen and Museth [2006] and the H-RLE of Houston et al [2006]. The framework can be applied to narrow band signed distances, fluid velocities, scalar fields, particle properties as well as standard graphics attributes like colors, texture coordinates, normals, displacements etc. In fact, our framework is applicable to a large body of computer graphics problems that involve sequential or random access to very large co-dimension one (level set) and zero (e.g. fluid) data sets. We demonstrate this with several applications, including fluid simulations interacting with large boundaries (≈ 1500 3 ), surface deformations (≈ 2048 3 ), the solution of partial differential equations on large surfaces (≈ 4096 3 ) and mesh-to-level set scan conversions of resolutions up to ≈ 35000 3 (7 billion voxels in the narrow band). Our out-of-core framework is shown to be several times faster than current state-of-the-art level set data structures relying on OS paging. In particular we show sustained throughput (grid points/sec) for gigabyte sized level sets as high as 65% of state-of-the-art throughput for in-core simulations. We also demonstrate that our compression techniques out-perform state-of-the-art compression algorithms for narrow bands." @default.
- W2020180897 created "2016-06-24" @default.
- W2020180897 creator A5005668747 @default.
- W2020180897 creator A5034723250 @default.
- W2020180897 creator A5056070577 @default.
- W2020180897 creator A5085565542 @default.
- W2020180897 date "2007-10-01" @default.
- W2020180897 modified "2023-10-01" @default.
- W2020180897 title "Out-of-core and compressed level set methods" @default.
- W2020180897 cites W1504765007 @default.
- W2020180897 cites W1543277834 @default.
- W2020180897 cites W1600541137 @default.
- W2020180897 cites W1967289650 @default.
- W2020180897 cites W1970846581 @default.
- W2020180897 cites W1974817122 @default.
- W2020180897 cites W1977946246 @default.
- W2020180897 cites W1979953665 @default.
- W2020180897 cites W1981382127 @default.
- W2020180897 cites W1983274120 @default.
- W2020180897 cites W1986049249 @default.
- W2020180897 cites W1991113069 @default.
- W2020180897 cites W1991865061 @default.
- W2020180897 cites W2000214666 @default.
- W2020180897 cites W2001254200 @default.
- W2020180897 cites W2012541063 @default.
- W2020180897 cites W2015326607 @default.
- W2020180897 cites W2039189705 @default.
- W2020180897 cites W2045849310 @default.
- W2020180897 cites W2046441184 @default.
- W2020180897 cites W2050390071 @default.
- W2020180897 cites W2054308357 @default.
- W2020180897 cites W2054364255 @default.
- W2020180897 cites W2059978032 @default.
- W2020180897 cites W2060003021 @default.
- W2020180897 cites W2060863649 @default.
- W2020180897 cites W2060923592 @default.
- W2020180897 cites W2066326804 @default.
- W2020180897 cites W2070071217 @default.
- W2020180897 cites W2071490148 @default.
- W2020180897 cites W2072210981 @default.
- W2020180897 cites W2072853307 @default.
- W2020180897 cites W2093834886 @default.
- W2020180897 cites W2096108180 @default.
- W2020180897 cites W2099342750 @default.
- W2020180897 cites W2100196192 @default.
- W2020180897 cites W2101560656 @default.
- W2020180897 cites W2106802957 @default.
- W2020180897 cites W2112334475 @default.
- W2020180897 cites W2121605376 @default.
- W2020180897 cites W2129143463 @default.
- W2020180897 cites W2140743603 @default.
- W2020180897 cites W2142054519 @default.
- W2020180897 cites W2145163743 @default.
- W2020180897 cites W2150864656 @default.
- W2020180897 cites W2154074774 @default.
- W2020180897 cites W2161280476 @default.
- W2020180897 cites W2164936487 @default.
- W2020180897 cites W2170258208 @default.
- W2020180897 cites W2170421049 @default.
- W2020180897 cites W2171421712 @default.
- W2020180897 cites W2220625991 @default.
- W2020180897 cites W2229412420 @default.
- W2020180897 cites W2245672305 @default.
- W2020180897 cites W2247094253 @default.
- W2020180897 cites W2249773824 @default.
- W2020180897 cites W2295821368 @default.
- W2020180897 cites W2316564661 @default.
- W2020180897 cites W2999334926 @default.
- W2020180897 cites W3007604728 @default.
- W2020180897 cites W4212991783 @default.
- W2020180897 cites W4230960895 @default.
- W2020180897 cites W4236837374 @default.
- W2020180897 doi "https://doi.org/10.1145/1289603.1289607" @default.
- W2020180897 hasPublicationYear "2007" @default.
- W2020180897 type Work @default.
- W2020180897 sameAs 2020180897 @default.
- W2020180897 citedByCount "20" @default.
- W2020180897 countsByYear W20201808972012 @default.
- W2020180897 countsByYear W20201808972013 @default.
- W2020180897 countsByYear W20201808972014 @default.
- W2020180897 countsByYear W20201808972015 @default.
- W2020180897 countsByYear W20201808972016 @default.
- W2020180897 countsByYear W20201808972020 @default.
- W2020180897 countsByYear W20201808972023 @default.
- W2020180897 crossrefType "journal-article" @default.
- W2020180897 hasAuthorship W2020180897A5005668747 @default.
- W2020180897 hasAuthorship W2020180897A5034723250 @default.
- W2020180897 hasAuthorship W2020180897A5056070577 @default.
- W2020180897 hasAuthorship W2020180897A5085565542 @default.
- W2020180897 hasConcept C11413529 @default.
- W2020180897 hasConcept C121684516 @default.
- W2020180897 hasConcept C151730666 @default.
- W2020180897 hasConcept C159985019 @default.
- W2020180897 hasConcept C177264268 @default.
- W2020180897 hasConcept C17744445 @default.
- W2020180897 hasConcept C187691185 @default.
- W2020180897 hasConcept C192562407 @default.
- W2020180897 hasConcept C199360897 @default.