Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020187442> ?p ?o ?g. }
- W2020187442 endingPage "4731" @default.
- W2020187442 startingPage "4711" @default.
- W2020187442 abstract "In this paper we address the generalized finite element method for the Helmholtz equation. We obtain our method by employing the finite element method on Cartesian meshes, which may overlap the boundaries of the problem domain, and by enriching the approximation by plane waves pasted into the finite element basis at each mesh vertex by the partition of unity method. Here we address the q-convergence of the method, where q is the number of plane waves added at each vertex, for the class of smooth (analytic) solutions for which we get better than exponential convergence for sufficiently small h depending on p. An important observation is that we can monitor the accuracy in any computed solution quantity of interest at negligible cost by using q-extrapolation. Our results assume exact integration of all the employed integrals. Further studies are needed to analyze the effects of the numerical integrations, and also the effect of the roundoff errors." @default.
- W2020187442 created "2016-06-24" @default.
- W2020187442 creator A5015445294 @default.
- W2020187442 creator A5052448066 @default.
- W2020187442 creator A5074054198 @default.
- W2020187442 date "2006-07-01" @default.
- W2020187442 modified "2023-10-16" @default.
- W2020187442 title "The generalized finite element method for Helmholtz equation: Theory, computation, and open problems" @default.
- W2020187442 cites W1964437302 @default.
- W2020187442 cites W1971155154 @default.
- W2020187442 cites W1977993857 @default.
- W2020187442 cites W1978549505 @default.
- W2020187442 cites W1981474629 @default.
- W2020187442 cites W1998739679 @default.
- W2020187442 cites W2000234158 @default.
- W2020187442 cites W2000981618 @default.
- W2020187442 cites W2008398007 @default.
- W2020187442 cites W2009934830 @default.
- W2020187442 cites W2015162055 @default.
- W2020187442 cites W2017848419 @default.
- W2020187442 cites W2018039791 @default.
- W2020187442 cites W2021615646 @default.
- W2020187442 cites W2023582412 @default.
- W2020187442 cites W2025124289 @default.
- W2020187442 cites W2030604754 @default.
- W2020187442 cites W2031834510 @default.
- W2020187442 cites W2037092148 @default.
- W2020187442 cites W2041914347 @default.
- W2020187442 cites W2042015995 @default.
- W2020187442 cites W2043533888 @default.
- W2020187442 cites W2044011197 @default.
- W2020187442 cites W2046065675 @default.
- W2020187442 cites W2048069593 @default.
- W2020187442 cites W2079304554 @default.
- W2020187442 cites W2079925282 @default.
- W2020187442 cites W2090441313 @default.
- W2020187442 cites W2092011174 @default.
- W2020187442 cites W2092321552 @default.
- W2020187442 cites W2105484555 @default.
- W2020187442 cites W2115594660 @default.
- W2020187442 cites W2150789707 @default.
- W2020187442 cites W2156930743 @default.
- W2020187442 cites W2157721313 @default.
- W2020187442 cites W2159879340 @default.
- W2020187442 cites W2163914949 @default.
- W2020187442 doi "https://doi.org/10.1016/j.cma.2005.09.019" @default.
- W2020187442 hasPublicationYear "2006" @default.
- W2020187442 type Work @default.
- W2020187442 sameAs 2020187442 @default.
- W2020187442 citedByCount "156" @default.
- W2020187442 countsByYear W20201874422012 @default.
- W2020187442 countsByYear W20201874422013 @default.
- W2020187442 countsByYear W20201874422014 @default.
- W2020187442 countsByYear W20201874422015 @default.
- W2020187442 countsByYear W20201874422016 @default.
- W2020187442 countsByYear W20201874422017 @default.
- W2020187442 countsByYear W20201874422018 @default.
- W2020187442 countsByYear W20201874422019 @default.
- W2020187442 countsByYear W20201874422020 @default.
- W2020187442 countsByYear W20201874422021 @default.
- W2020187442 countsByYear W20201874422022 @default.
- W2020187442 countsByYear W20201874422023 @default.
- W2020187442 crossrefType "journal-article" @default.
- W2020187442 hasAuthorship W2020187442A5015445294 @default.
- W2020187442 hasAuthorship W2020187442A5052448066 @default.
- W2020187442 hasAuthorship W2020187442A5074054198 @default.
- W2020187442 hasConcept C102205669 @default.
- W2020187442 hasConcept C121332964 @default.
- W2020187442 hasConcept C132459708 @default.
- W2020187442 hasConcept C134306372 @default.
- W2020187442 hasConcept C135628077 @default.
- W2020187442 hasConcept C144468803 @default.
- W2020187442 hasConcept C16038011 @default.
- W2020187442 hasConcept C182310444 @default.
- W2020187442 hasConcept C18591234 @default.
- W2020187442 hasConcept C2524010 @default.
- W2020187442 hasConcept C27592594 @default.
- W2020187442 hasConcept C28826006 @default.
- W2020187442 hasConcept C31487907 @default.
- W2020187442 hasConcept C33923547 @default.
- W2020187442 hasConcept C62520636 @default.
- W2020187442 hasConcept C97355855 @default.
- W2020187442 hasConceptScore W2020187442C102205669 @default.
- W2020187442 hasConceptScore W2020187442C121332964 @default.
- W2020187442 hasConceptScore W2020187442C132459708 @default.
- W2020187442 hasConceptScore W2020187442C134306372 @default.
- W2020187442 hasConceptScore W2020187442C135628077 @default.
- W2020187442 hasConceptScore W2020187442C144468803 @default.
- W2020187442 hasConceptScore W2020187442C16038011 @default.
- W2020187442 hasConceptScore W2020187442C182310444 @default.
- W2020187442 hasConceptScore W2020187442C18591234 @default.
- W2020187442 hasConceptScore W2020187442C2524010 @default.
- W2020187442 hasConceptScore W2020187442C27592594 @default.
- W2020187442 hasConceptScore W2020187442C28826006 @default.
- W2020187442 hasConceptScore W2020187442C31487907 @default.
- W2020187442 hasConceptScore W2020187442C33923547 @default.
- W2020187442 hasConceptScore W2020187442C62520636 @default.
- W2020187442 hasConceptScore W2020187442C97355855 @default.