Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020187661> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2020187661 abstract "Hyper spectral images provide a more detailed information than multispectral images, as every pixel in the image contains contiguous spectral bands to characterize the details in the scene. Since hyper spectral images occupy large memory space and take more processing time for the transmission, it is highly desirable to use an efficient compression technique. In this paper we discuss hyper spectral image compression using matrix factorization based on a proposed non-iterative method and compare with the Tucker decomposition for hyper spectral image compression. The proposed non-iterative positive matrix factorization method is based on least mean square error (LMSE) criterion. Results indicate that hyper spectral image compression based on non-iterative method of matrix factorization needs less processing time, compared with compression based on Tucker decomposition." @default.
- W2020187661 created "2016-06-24" @default.
- W2020187661 creator A5010586802 @default.
- W2020187661 creator A5029884128 @default.
- W2020187661 creator A5068085784 @default.
- W2020187661 date "2013-12-01" @default.
- W2020187661 modified "2023-10-16" @default.
- W2020187661 title "Hyper spectral image compression based on non-iterative matrix factorization" @default.
- W2020187661 cites W1546366002 @default.
- W2020187661 cites W1566504545 @default.
- W2020187661 cites W1971356997 @default.
- W2020187661 cites W2040994233 @default.
- W2020187661 cites W2122726283 @default.
- W2020187661 cites W2127308700 @default.
- W2020187661 cites W2130339531 @default.
- W2020187661 cites W2135619855 @default.
- W2020187661 cites W2170407643 @default.
- W2020187661 doi "https://doi.org/10.1109/iccic.2013.6724260" @default.
- W2020187661 hasPublicationYear "2013" @default.
- W2020187661 type Work @default.
- W2020187661 sameAs 2020187661 @default.
- W2020187661 citedByCount "3" @default.
- W2020187661 countsByYear W20201876612014 @default.
- W2020187661 countsByYear W20201876612015 @default.
- W2020187661 countsByYear W20201876612016 @default.
- W2020187661 crossrefType "proceedings-article" @default.
- W2020187661 hasAuthorship W2020187661A5010586802 @default.
- W2020187661 hasAuthorship W2020187661A5029884128 @default.
- W2020187661 hasAuthorship W2020187661A5068085784 @default.
- W2020187661 hasConcept C11413529 @default.
- W2020187661 hasConcept C115961682 @default.
- W2020187661 hasConcept C121332964 @default.
- W2020187661 hasConcept C13481523 @default.
- W2020187661 hasConcept C154945302 @default.
- W2020187661 hasConcept C158693339 @default.
- W2020187661 hasConcept C159694833 @default.
- W2020187661 hasConcept C173163844 @default.
- W2020187661 hasConcept C180016635 @default.
- W2020187661 hasConcept C187834632 @default.
- W2020187661 hasConcept C31972630 @default.
- W2020187661 hasConcept C33923547 @default.
- W2020187661 hasConcept C41008148 @default.
- W2020187661 hasConcept C42355184 @default.
- W2020187661 hasConcept C62520636 @default.
- W2020187661 hasConcept C78548338 @default.
- W2020187661 hasConcept C9417928 @default.
- W2020187661 hasConcept C97355855 @default.
- W2020187661 hasConceptScore W2020187661C11413529 @default.
- W2020187661 hasConceptScore W2020187661C115961682 @default.
- W2020187661 hasConceptScore W2020187661C121332964 @default.
- W2020187661 hasConceptScore W2020187661C13481523 @default.
- W2020187661 hasConceptScore W2020187661C154945302 @default.
- W2020187661 hasConceptScore W2020187661C158693339 @default.
- W2020187661 hasConceptScore W2020187661C159694833 @default.
- W2020187661 hasConceptScore W2020187661C173163844 @default.
- W2020187661 hasConceptScore W2020187661C180016635 @default.
- W2020187661 hasConceptScore W2020187661C187834632 @default.
- W2020187661 hasConceptScore W2020187661C31972630 @default.
- W2020187661 hasConceptScore W2020187661C33923547 @default.
- W2020187661 hasConceptScore W2020187661C41008148 @default.
- W2020187661 hasConceptScore W2020187661C42355184 @default.
- W2020187661 hasConceptScore W2020187661C62520636 @default.
- W2020187661 hasConceptScore W2020187661C78548338 @default.
- W2020187661 hasConceptScore W2020187661C9417928 @default.
- W2020187661 hasConceptScore W2020187661C97355855 @default.
- W2020187661 hasLocation W20201876611 @default.
- W2020187661 hasOpenAccess W2020187661 @default.
- W2020187661 hasPrimaryLocation W20201876611 @default.
- W2020187661 hasRelatedWork W1998384771 @default.
- W2020187661 hasRelatedWork W2011951931 @default.
- W2020187661 hasRelatedWork W2030578664 @default.
- W2020187661 hasRelatedWork W2066404474 @default.
- W2020187661 hasRelatedWork W2126922921 @default.
- W2020187661 hasRelatedWork W2131293349 @default.
- W2020187661 hasRelatedWork W2166032757 @default.
- W2020187661 hasRelatedWork W2496211397 @default.
- W2020187661 hasRelatedWork W3159128980 @default.
- W2020187661 hasRelatedWork W2560325355 @default.
- W2020187661 isParatext "false" @default.
- W2020187661 isRetracted "false" @default.
- W2020187661 magId "2020187661" @default.
- W2020187661 workType "article" @default.