Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020194153> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2020194153 endingPage "127" @default.
- W2020194153 startingPage "119" @default.
- W2020194153 abstract "Abstract Carbonation on concrete structures in underground sites or metropolitan cities is one of the major causes of steel corrosion in RC (Reinforced Concrete) structures. For quantitative evaluation of carbonation, physico-chemo modeling for reaction with dissolved CO 2 and hydrates is necessary. Amount of hydrates and CO 2 diffusion coefficient play an important role in evaluation of carbonation behavior, however, it is difficult to obtain a various CO 2 diffusion coefficient from experiments due to limited time and cost. In this paper, a numerical technique for carbonation behavior using neural network algorithm and carbonation modeling is developed. To obtain the comparable data set of CO 2 diffusion coefficient, experimental results which were performed previously are analyzed. Mix design components such as cement content, water to cement ratio, and volume of aggregate including exposure condition of relative humidity are selected as neurons. Training of learning for neural network is carried out using back propagation algorithm. The diffusion coefficient of CO 2 from neural network are in good agreement with experimental data considering various conditions such as water to cement ratios (w/c: 0.42, 0.50, and 0.58) and relative humidities (R.H.: 10%, 45%, 75%, and 90%). Furthermore, mercury intrusion porosimetry (MIP) test is also performed to evaluate the change in porosity under carbonation. Finally, the numerical technique which is based on behavior in early-aged concrete such as hydration and pore structure is developed considering CO 2 diffusion coefficient from neural network and changing effect on porosity under carbonation." @default.
- W2020194153 created "2016-06-24" @default.
- W2020194153 creator A5047787283 @default.
- W2020194153 creator A5067124941 @default.
- W2020194153 date "2010-01-01" @default.
- W2020194153 modified "2023-10-10" @default.
- W2020194153 title "Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling" @default.
- W2020194153 cites W1980311077 @default.
- W2020194153 cites W1988390643 @default.
- W2020194153 cites W2002541649 @default.
- W2020194153 cites W2008447415 @default.
- W2020194153 cites W2013229921 @default.
- W2020194153 cites W2015660212 @default.
- W2020194153 cites W2016312379 @default.
- W2020194153 cites W2026638908 @default.
- W2020194153 cites W2039351181 @default.
- W2020194153 cites W2045310313 @default.
- W2020194153 cites W2061933243 @default.
- W2020194153 cites W2071152159 @default.
- W2020194153 cites W2074765068 @default.
- W2020194153 cites W2078339956 @default.
- W2020194153 cites W2122380425 @default.
- W2020194153 doi "https://doi.org/10.1016/j.cemconres.2009.08.022" @default.
- W2020194153 hasPublicationYear "2010" @default.
- W2020194153 type Work @default.
- W2020194153 sameAs 2020194153 @default.
- W2020194153 citedByCount "95" @default.
- W2020194153 countsByYear W20201941532012 @default.
- W2020194153 countsByYear W20201941532013 @default.
- W2020194153 countsByYear W20201941532014 @default.
- W2020194153 countsByYear W20201941532015 @default.
- W2020194153 countsByYear W20201941532016 @default.
- W2020194153 countsByYear W20201941532017 @default.
- W2020194153 countsByYear W20201941532018 @default.
- W2020194153 countsByYear W20201941532019 @default.
- W2020194153 countsByYear W20201941532020 @default.
- W2020194153 countsByYear W20201941532021 @default.
- W2020194153 countsByYear W20201941532022 @default.
- W2020194153 countsByYear W20201941532023 @default.
- W2020194153 crossrefType "journal-article" @default.
- W2020194153 hasAuthorship W2020194153A5047787283 @default.
- W2020194153 hasAuthorship W2020194153A5067124941 @default.
- W2020194153 hasConcept C120809312 @default.
- W2020194153 hasConcept C154945302 @default.
- W2020194153 hasConcept C159985019 @default.
- W2020194153 hasConcept C192562407 @default.
- W2020194153 hasConcept C41008148 @default.
- W2020194153 hasConcept C50644808 @default.
- W2020194153 hasConceptScore W2020194153C120809312 @default.
- W2020194153 hasConceptScore W2020194153C154945302 @default.
- W2020194153 hasConceptScore W2020194153C159985019 @default.
- W2020194153 hasConceptScore W2020194153C192562407 @default.
- W2020194153 hasConceptScore W2020194153C41008148 @default.
- W2020194153 hasConceptScore W2020194153C50644808 @default.
- W2020194153 hasIssue "1" @default.
- W2020194153 hasLocation W20201941531 @default.
- W2020194153 hasOpenAccess W2020194153 @default.
- W2020194153 hasPrimaryLocation W20201941531 @default.
- W2020194153 hasRelatedWork W1994103032 @default.
- W2020194153 hasRelatedWork W2011052271 @default.
- W2020194153 hasRelatedWork W2051270029 @default.
- W2020194153 hasRelatedWork W2082293200 @default.
- W2020194153 hasRelatedWork W2137307547 @default.
- W2020194153 hasRelatedWork W2380293314 @default.
- W2020194153 hasRelatedWork W2899084033 @default.
- W2020194153 hasRelatedWork W2943188944 @default.
- W2020194153 hasRelatedWork W4285802202 @default.
- W2020194153 hasRelatedWork W4317433637 @default.
- W2020194153 hasVolume "40" @default.
- W2020194153 isParatext "false" @default.
- W2020194153 isRetracted "false" @default.
- W2020194153 magId "2020194153" @default.
- W2020194153 workType "article" @default.