Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020195018> ?p ?o ?g. }
- W2020195018 endingPage "9" @default.
- W2020195018 startingPage "1" @default.
- W2020195018 abstract "Hammerstein model has been popularly applied to identify the nonlinear systems. In this paper, a Hammerstein-type neural network (HTNN) is derived to formulate the well-known Hammerstein model. The HTNN consists of a nonlinear static gain in cascade with a linear dynamic part. First, the Lipschitz criterion for order determination is derived. Second, the backpropagation algorithm for updating the network weights is presented, and the stability analysis is also drawn. Finally, simulation results show that HTNN identification approach demonstrated identification performances." @default.
- W2020195018 created "2016-06-24" @default.
- W2020195018 creator A5040953644 @default.
- W2020195018 creator A5081142499 @default.
- W2020195018 creator A5091319287 @default.
- W2020195018 date "2014-01-01" @default.
- W2020195018 modified "2023-10-17" @default.
- W2020195018 title "Identification of Nonlinear Dynamic Systems Using Hammerstein-Type Neural Network" @default.
- W2020195018 cites W1973407458 @default.
- W2020195018 cites W1976061125 @default.
- W2020195018 cites W1983024735 @default.
- W2020195018 cites W1989113356 @default.
- W2020195018 cites W1990892748 @default.
- W2020195018 cites W1990895357 @default.
- W2020195018 cites W1995004530 @default.
- W2020195018 cites W2005177243 @default.
- W2020195018 cites W2025172105 @default.
- W2020195018 cites W2041557696 @default.
- W2020195018 cites W2072425076 @default.
- W2020195018 cites W2088016792 @default.
- W2020195018 cites W2093353308 @default.
- W2020195018 cites W2112750446 @default.
- W2020195018 cites W2118415523 @default.
- W2020195018 cites W2132423763 @default.
- W2020195018 cites W2148957909 @default.
- W2020195018 cites W2162638861 @default.
- W2020195018 cites W2169507518 @default.
- W2020195018 cites W2316476881 @default.
- W2020195018 cites W4247288879 @default.
- W2020195018 doi "https://doi.org/10.1155/2014/959507" @default.
- W2020195018 hasPublicationYear "2014" @default.
- W2020195018 type Work @default.
- W2020195018 sameAs 2020195018 @default.
- W2020195018 citedByCount "11" @default.
- W2020195018 countsByYear W20201950182015 @default.
- W2020195018 countsByYear W20201950182016 @default.
- W2020195018 countsByYear W20201950182018 @default.
- W2020195018 countsByYear W20201950182019 @default.
- W2020195018 countsByYear W20201950182020 @default.
- W2020195018 countsByYear W20201950182021 @default.
- W2020195018 crossrefType "journal-article" @default.
- W2020195018 hasAuthorship W2020195018A5040953644 @default.
- W2020195018 hasAuthorship W2020195018A5081142499 @default.
- W2020195018 hasAuthorship W2020195018A5091319287 @default.
- W2020195018 hasBestOaLocation W20201950181 @default.
- W2020195018 hasConcept C112972136 @default.
- W2020195018 hasConcept C11413529 @default.
- W2020195018 hasConcept C116834253 @default.
- W2020195018 hasConcept C119247159 @default.
- W2020195018 hasConcept C119857082 @default.
- W2020195018 hasConcept C121332964 @default.
- W2020195018 hasConcept C127413603 @default.
- W2020195018 hasConcept C134306372 @default.
- W2020195018 hasConcept C154945302 @default.
- W2020195018 hasConcept C155032097 @default.
- W2020195018 hasConcept C158622935 @default.
- W2020195018 hasConcept C18903297 @default.
- W2020195018 hasConcept C22157029 @default.
- W2020195018 hasConcept C22324862 @default.
- W2020195018 hasConcept C2775924081 @default.
- W2020195018 hasConcept C2777299769 @default.
- W2020195018 hasConcept C33923547 @default.
- W2020195018 hasConcept C34146451 @default.
- W2020195018 hasConcept C41008148 @default.
- W2020195018 hasConcept C42360764 @default.
- W2020195018 hasConcept C47446073 @default.
- W2020195018 hasConcept C50644808 @default.
- W2020195018 hasConcept C59822182 @default.
- W2020195018 hasConcept C62520636 @default.
- W2020195018 hasConcept C67186912 @default.
- W2020195018 hasConcept C77088390 @default.
- W2020195018 hasConcept C86803240 @default.
- W2020195018 hasConceptScore W2020195018C112972136 @default.
- W2020195018 hasConceptScore W2020195018C11413529 @default.
- W2020195018 hasConceptScore W2020195018C116834253 @default.
- W2020195018 hasConceptScore W2020195018C119247159 @default.
- W2020195018 hasConceptScore W2020195018C119857082 @default.
- W2020195018 hasConceptScore W2020195018C121332964 @default.
- W2020195018 hasConceptScore W2020195018C127413603 @default.
- W2020195018 hasConceptScore W2020195018C134306372 @default.
- W2020195018 hasConceptScore W2020195018C154945302 @default.
- W2020195018 hasConceptScore W2020195018C155032097 @default.
- W2020195018 hasConceptScore W2020195018C158622935 @default.
- W2020195018 hasConceptScore W2020195018C18903297 @default.
- W2020195018 hasConceptScore W2020195018C22157029 @default.
- W2020195018 hasConceptScore W2020195018C22324862 @default.
- W2020195018 hasConceptScore W2020195018C2775924081 @default.
- W2020195018 hasConceptScore W2020195018C2777299769 @default.
- W2020195018 hasConceptScore W2020195018C33923547 @default.
- W2020195018 hasConceptScore W2020195018C34146451 @default.
- W2020195018 hasConceptScore W2020195018C41008148 @default.
- W2020195018 hasConceptScore W2020195018C42360764 @default.
- W2020195018 hasConceptScore W2020195018C47446073 @default.
- W2020195018 hasConceptScore W2020195018C50644808 @default.
- W2020195018 hasConceptScore W2020195018C59822182 @default.
- W2020195018 hasConceptScore W2020195018C62520636 @default.
- W2020195018 hasConceptScore W2020195018C67186912 @default.
- W2020195018 hasConceptScore W2020195018C77088390 @default.