Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020195882> ?p ?o ?g. }
- W2020195882 endingPage "14" @default.
- W2020195882 startingPage "1" @default.
- W2020195882 abstract "High-throughput screening (HTS) has achieved a dominant role in drug discovery over the past 2 decades. The goal of HTS is to identify active compounds (hits) by screening large numbers of diverse chemical compounds against selected targets and/or cellular phenotypes. The HTS process consists of multiple automated steps involving compound handling, liquid transfers, and assay signal capture, all of which unavoidably contribute to systematic variation in the screening data. The challenge is to distinguish biologically active compounds from assay variability. Traditional plate controls-based and non-controls-based statistical methods have been widely used for HTS data processing and active identification by both the pharmaceutical industry and academic sectors. More recently, improved robust statistical methods have been introduced, reducing the impact of systematic row/column effects in HTS data. To apply such robust methods effectively and properly, we need to understand their necessity and functionality. Data from 6 HTS case histories are presented to illustrate that robust statistical methods may sometimes be misleading and can result in more, rather than less, false positives or false negatives. In practice, no single method is the best hit detection method for every HTS data set. However, to aid the selection of the most appropriate HTS data-processing and active identification methods, the authors developed a 3-step statistical decision methodology. Step 1 is to determine the most appropriate HTS data-processing method and establish criteria for quality control review and active identification from 3-day assay signal window and DMSO validation tests. Step 2 is to perform a multilevel statistical and graphical review of the screening data to exclude data that fall outside the quality control criteria. Step 3 is to apply the established active criterion to the quality-assured data to identify the active compounds. High-throughput screening (HTS) has achieved a dominant role in drug discovery over the past 2 decades. The goal of HTS is to identify active compounds (hits) by screening large numbers of diverse chemical compounds against selected targets and/or cellular phenotypes. The HTS process consists of multiple automated steps involving compound handling, liquid transfers, and assay signal capture, all of which unavoidably contribute to systematic variation in the screening data. The challenge is to distinguish biologically active compounds from assay variability. Traditional plate controls-based and non-controls-based statistical methods have been widely used for HTS data processing and active identification by both the pharmaceutical industry and academic sectors. More recently, improved robust statistical methods have been introduced, reducing the impact of systematic row/column effects in HTS data. To apply such robust methods effectively and properly, we need to understand their necessity and functionality. Data from 6 HTS case histories are presented to illustrate that robust statistical methods may sometimes be misleading and can result in more, rather than less, false positives or false negatives. In practice, no single method is the best hit detection method for every HTS data set. However, to aid the selection of the most appropriate HTS data-processing and active identification methods, the authors developed a 3-step statistical decision methodology. Step 1 is to determine the most appropriate HTS data-processing method and establish criteria for quality control review and active identification from 3-day assay signal window and DMSO validation tests. Step 2 is to perform a multilevel statistical and graphical review of the screening data to exclude data that fall outside the quality control criteria. Step 3 is to apply the established active criterion to the quality-assured data to identify the active compounds." @default.
- W2020195882 created "2016-06-24" @default.
- W2020195882 creator A5029471010 @default.
- W2020195882 creator A5085858115 @default.
- W2020195882 creator A5086296534 @default.
- W2020195882 creator A5087599491 @default.
- W2020195882 date "2011-01-01" @default.
- W2020195882 modified "2023-10-13" @default.
- W2020195882 title "Identifying Actives from HTS Data Sets: Practical Approaches for the Selection of an Appropriate HTS Data-Processing Method and Quality Control Review" @default.
- W2020195882 cites W1640748652 @default.
- W2020195882 cites W1967157579 @default.
- W2020195882 cites W1982625646 @default.
- W2020195882 cites W1991001144 @default.
- W2020195882 cites W2027999208 @default.
- W2020195882 cites W2029935944 @default.
- W2020195882 cites W2036922942 @default.
- W2020195882 cites W2039782318 @default.
- W2020195882 cites W2044721076 @default.
- W2020195882 cites W2045166000 @default.
- W2020195882 cites W2049731529 @default.
- W2020195882 cites W2052643283 @default.
- W2020195882 cites W2059170306 @default.
- W2020195882 cites W2073935882 @default.
- W2020195882 cites W2077516539 @default.
- W2020195882 cites W2097449851 @default.
- W2020195882 cites W2105772745 @default.
- W2020195882 cites W2113011958 @default.
- W2020195882 cites W2124072633 @default.
- W2020195882 cites W2124910405 @default.
- W2020195882 cites W2132487780 @default.
- W2020195882 cites W2142826175 @default.
- W2020195882 cites W2162424885 @default.
- W2020195882 cites W2168587587 @default.
- W2020195882 cites W2170422407 @default.
- W2020195882 doi "https://doi.org/10.1177/1087057110389039" @default.
- W2020195882 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21160066" @default.
- W2020195882 hasPublicationYear "2011" @default.
- W2020195882 type Work @default.
- W2020195882 sameAs 2020195882 @default.
- W2020195882 citedByCount "56" @default.
- W2020195882 countsByYear W20201958822012 @default.
- W2020195882 countsByYear W20201958822013 @default.
- W2020195882 countsByYear W20201958822014 @default.
- W2020195882 countsByYear W20201958822015 @default.
- W2020195882 countsByYear W20201958822016 @default.
- W2020195882 countsByYear W20201958822017 @default.
- W2020195882 countsByYear W20201958822018 @default.
- W2020195882 countsByYear W20201958822019 @default.
- W2020195882 countsByYear W20201958822020 @default.
- W2020195882 countsByYear W20201958822021 @default.
- W2020195882 countsByYear W20201958822022 @default.
- W2020195882 countsByYear W20201958822023 @default.
- W2020195882 crossrefType "journal-article" @default.
- W2020195882 hasAuthorship W2020195882A5029471010 @default.
- W2020195882 hasAuthorship W2020195882A5085858115 @default.
- W2020195882 hasAuthorship W2020195882A5086296534 @default.
- W2020195882 hasAuthorship W2020195882A5087599491 @default.
- W2020195882 hasBestOaLocation W20201958821 @default.
- W2020195882 hasConcept C111472728 @default.
- W2020195882 hasConcept C111919701 @default.
- W2020195882 hasConcept C112789634 @default.
- W2020195882 hasConcept C113644684 @default.
- W2020195882 hasConcept C116834253 @default.
- W2020195882 hasConcept C119857082 @default.
- W2020195882 hasConcept C124101348 @default.
- W2020195882 hasConcept C127413603 @default.
- W2020195882 hasConcept C138885662 @default.
- W2020195882 hasConcept C176217482 @default.
- W2020195882 hasConcept C177264268 @default.
- W2020195882 hasConcept C199360897 @default.
- W2020195882 hasConcept C21547014 @default.
- W2020195882 hasConcept C24756922 @default.
- W2020195882 hasConcept C2779530757 @default.
- W2020195882 hasConcept C41008148 @default.
- W2020195882 hasConcept C59822182 @default.
- W2020195882 hasConcept C64869954 @default.
- W2020195882 hasConcept C81917197 @default.
- W2020195882 hasConcept C86803240 @default.
- W2020195882 hasConcept C98045186 @default.
- W2020195882 hasConceptScore W2020195882C111472728 @default.
- W2020195882 hasConceptScore W2020195882C111919701 @default.
- W2020195882 hasConceptScore W2020195882C112789634 @default.
- W2020195882 hasConceptScore W2020195882C113644684 @default.
- W2020195882 hasConceptScore W2020195882C116834253 @default.
- W2020195882 hasConceptScore W2020195882C119857082 @default.
- W2020195882 hasConceptScore W2020195882C124101348 @default.
- W2020195882 hasConceptScore W2020195882C127413603 @default.
- W2020195882 hasConceptScore W2020195882C138885662 @default.
- W2020195882 hasConceptScore W2020195882C176217482 @default.
- W2020195882 hasConceptScore W2020195882C177264268 @default.
- W2020195882 hasConceptScore W2020195882C199360897 @default.
- W2020195882 hasConceptScore W2020195882C21547014 @default.
- W2020195882 hasConceptScore W2020195882C24756922 @default.
- W2020195882 hasConceptScore W2020195882C2779530757 @default.
- W2020195882 hasConceptScore W2020195882C41008148 @default.
- W2020195882 hasConceptScore W2020195882C59822182 @default.
- W2020195882 hasConceptScore W2020195882C64869954 @default.
- W2020195882 hasConceptScore W2020195882C81917197 @default.