Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020197462> ?p ?o ?g. }
- W2020197462 endingPage "4594" @default.
- W2020197462 startingPage "4585" @default.
- W2020197462 abstract "Submarine hydrothermal systems at mid‐ocean ridges evolve within a region of brittle deformation overlying a region of ductile deformation. The interplay between brittle and ductile modes of deformation and the geometry of fracture systems within the brittle zone can exert a significant influence on fluid flow, especially under conditions leading to aqueous two‐phase separation. Within the brittle region, fractures vary between large conduits directly open to the seafloor and small veins and microcracks with constricted or indirect connections to the seafloor. In the ductile region, fluids may be trapped under near‐lithostatic pressure, while fluids within throughgoing veins in the brittle region will experience hydrostatic pressure. In a narrow transition zone between these two extremes, a steep pore fluid pressure gradient must exist. In the brittle region itself, fluid pressures will vary between lithostatic and hydrostatic as fluid occupies interstices varying from isolated pores through tortuous microcracks to channels directly connected to the main upflow conduits. A hydrostatic gradient modified by the decreased density of hot fluid and the effects of the flow itself should be applicable in major conduits open to the seafloor. Fluctuating pressure conditions in the transition zone may induce phase changes in a fluid remaining at constant depth. As a result of the large volume increase that accompanies two‐phase separation, a two‐phase fluid must either accelerate upward or exert an increased pressure on its surroundings, possibly leading to enhanced fracturing. The fracture configuration will also affect the behavior of the mixed fluid after phase separation. A two phase‐fluid experiencing rapid turbulent flow in a large open conduit is more likely to remain a well‐mixed suspension of vapor and liquid, whereas a two‐phase mixture in a constricted, branching series of channels, moving more slowly in a laminar flow regime, is more likely to undergo physical isolation of the phases, leading to venting of a vapor phase and retention of a saline brine phase at depth. We propose a possible configuration for the fracture pattern within a submarine hydrothermal system consisting of a feeder zone comprised of anastomozing microcracks and veinlets, progressively increasing in diameter and decreasing in abundance, feeding into a main upflow/stockwork zone in which flow directly to the surface takes place in relatively large, unconstricted conduits. Fluid movement within a feeder zone may be modified by capillary flow, tortuous channelways, disconnected fractures, blocking of cracks by mineral deposition, and opening of new fractures." @default.
- W2020197462 created "2016-06-24" @default.
- W2020197462 creator A5060731239 @default.
- W2020197462 creator A5082803798 @default.
- W2020197462 date "1988-05-10" @default.
- W2020197462 modified "2023-10-17" @default.
- W2020197462 title "Response of two‐phase fluids to fracture configurations within submarine hydrothermal systems" @default.
- W2020197462 cites W121624279 @default.
- W2020197462 cites W1968110192 @default.
- W2020197462 cites W1969225519 @default.
- W2020197462 cites W1970961082 @default.
- W2020197462 cites W1971622854 @default.
- W2020197462 cites W1974898143 @default.
- W2020197462 cites W1975999371 @default.
- W2020197462 cites W1977664265 @default.
- W2020197462 cites W1981970781 @default.
- W2020197462 cites W1987556752 @default.
- W2020197462 cites W1989389163 @default.
- W2020197462 cites W1990006396 @default.
- W2020197462 cites W1997728424 @default.
- W2020197462 cites W1998226026 @default.
- W2020197462 cites W2002137369 @default.
- W2020197462 cites W2002555513 @default.
- W2020197462 cites W2003508887 @default.
- W2020197462 cites W2013138018 @default.
- W2020197462 cites W2013943493 @default.
- W2020197462 cites W2020971876 @default.
- W2020197462 cites W2021185122 @default.
- W2020197462 cites W2023257022 @default.
- W2020197462 cites W2023366799 @default.
- W2020197462 cites W2027900489 @default.
- W2020197462 cites W2029206267 @default.
- W2020197462 cites W2029384016 @default.
- W2020197462 cites W2029946095 @default.
- W2020197462 cites W2039443168 @default.
- W2020197462 cites W2044737780 @default.
- W2020197462 cites W2056373579 @default.
- W2020197462 cites W2059236429 @default.
- W2020197462 cites W2062055122 @default.
- W2020197462 cites W2062215904 @default.
- W2020197462 cites W2068609388 @default.
- W2020197462 cites W2072162717 @default.
- W2020197462 cites W2072527059 @default.
- W2020197462 cites W2075688638 @default.
- W2020197462 cites W2076413780 @default.
- W2020197462 cites W2076422580 @default.
- W2020197462 cites W2077771469 @default.
- W2020197462 cites W2081233182 @default.
- W2020197462 cites W2085307865 @default.
- W2020197462 cites W2087774564 @default.
- W2020197462 cites W2089921628 @default.
- W2020197462 cites W2091511270 @default.
- W2020197462 cites W2100079681 @default.
- W2020197462 cites W2100537585 @default.
- W2020197462 cites W2104955145 @default.
- W2020197462 cites W2115730736 @default.
- W2020197462 cites W2118300017 @default.
- W2020197462 cites W2128996948 @default.
- W2020197462 cites W2143767986 @default.
- W2020197462 cites W2156217331 @default.
- W2020197462 cites W2160830159 @default.
- W2020197462 cites W2160980032 @default.
- W2020197462 cites W2167034012 @default.
- W2020197462 cites W2169530073 @default.
- W2020197462 cites W2304874705 @default.
- W2020197462 cites W2335301929 @default.
- W2020197462 cites W4241723339 @default.
- W2020197462 cites W4243715129 @default.
- W2020197462 doi "https://doi.org/10.1029/jb093ib05p04585" @default.
- W2020197462 hasPublicationYear "1988" @default.
- W2020197462 type Work @default.
- W2020197462 sameAs 2020197462 @default.
- W2020197462 citedByCount "68" @default.
- W2020197462 countsByYear W20201974622013 @default.
- W2020197462 countsByYear W20201974622015 @default.
- W2020197462 countsByYear W20201974622017 @default.
- W2020197462 countsByYear W20201974622018 @default.
- W2020197462 countsByYear W20201974622020 @default.
- W2020197462 countsByYear W20201974622022 @default.
- W2020197462 crossrefType "journal-article" @default.
- W2020197462 hasAuthorship W2020197462A5060731239 @default.
- W2020197462 hasAuthorship W2020197462A5082803798 @default.
- W2020197462 hasConcept C111368507 @default.
- W2020197462 hasConcept C117485682 @default.
- W2020197462 hasConcept C121327165 @default.
- W2020197462 hasConcept C121332964 @default.
- W2020197462 hasConcept C127313418 @default.
- W2020197462 hasConcept C134853933 @default.
- W2020197462 hasConcept C136478896 @default.
- W2020197462 hasConcept C156622251 @default.
- W2020197462 hasConcept C159985019 @default.
- W2020197462 hasConcept C165205528 @default.
- W2020197462 hasConcept C178790620 @default.
- W2020197462 hasConcept C185592680 @default.
- W2020197462 hasConcept C187320778 @default.
- W2020197462 hasConcept C192562407 @default.
- W2020197462 hasConcept C204366326 @default.
- W2020197462 hasConcept C2910081258 @default.