Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020223838> ?p ?o ?g. }
- W2020223838 endingPage "5" @default.
- W2020223838 startingPage "5" @default.
- W2020223838 abstract "Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation." @default.
- W2020223838 created "2016-06-24" @default.
- W2020223838 creator A5005425458 @default.
- W2020223838 creator A5019454840 @default.
- W2020223838 creator A5034820084 @default.
- W2020223838 creator A5037383891 @default.
- W2020223838 creator A5043302116 @default.
- W2020223838 creator A5051162009 @default.
- W2020223838 creator A5065227982 @default.
- W2020223838 creator A5066949209 @default.
- W2020223838 creator A5071563546 @default.
- W2020223838 creator A5072946826 @default.
- W2020223838 creator A5078484855 @default.
- W2020223838 date "2013-01-01" @default.
- W2020223838 modified "2023-09-26" @default.
- W2020223838 title "A high-performance spatial database based approach for pathology imaging algorithm evaluation" @default.
- W2020223838 cites W1482436805 @default.
- W2020223838 cites W190927549 @default.
- W2020223838 cites W1993456074 @default.
- W2020223838 cites W2046713668 @default.
- W2020223838 cites W2051866343 @default.
- W2020223838 cites W2073985768 @default.
- W2020223838 cites W2092023749 @default.
- W2020223838 cites W2106642566 @default.
- W2020223838 cites W2113364578 @default.
- W2020223838 cites W2113933145 @default.
- W2020223838 cites W2132850962 @default.
- W2020223838 cites W2136773811 @default.
- W2020223838 cites W2138776109 @default.
- W2020223838 cites W2139484679 @default.
- W2020223838 cites W2168166653 @default.
- W2020223838 cites W2171941690 @default.
- W2020223838 doi "https://doi.org/10.4103/2153-3539.108543" @default.
- W2020223838 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3624706" @default.
- W2020223838 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23599905" @default.
- W2020223838 hasPublicationYear "2013" @default.
- W2020223838 type Work @default.
- W2020223838 sameAs 2020223838 @default.
- W2020223838 citedByCount "20" @default.
- W2020223838 countsByYear W20202238382014 @default.
- W2020223838 countsByYear W20202238382015 @default.
- W2020223838 countsByYear W20202238382016 @default.
- W2020223838 countsByYear W20202238382017 @default.
- W2020223838 countsByYear W20202238382018 @default.
- W2020223838 countsByYear W20202238382022 @default.
- W2020223838 crossrefType "journal-article" @default.
- W2020223838 hasAuthorship W2020223838A5005425458 @default.
- W2020223838 hasAuthorship W2020223838A5019454840 @default.
- W2020223838 hasAuthorship W2020223838A5034820084 @default.
- W2020223838 hasAuthorship W2020223838A5037383891 @default.
- W2020223838 hasAuthorship W2020223838A5043302116 @default.
- W2020223838 hasAuthorship W2020223838A5051162009 @default.
- W2020223838 hasAuthorship W2020223838A5065227982 @default.
- W2020223838 hasAuthorship W2020223838A5066949209 @default.
- W2020223838 hasAuthorship W2020223838A5071563546 @default.
- W2020223838 hasAuthorship W2020223838A5072946826 @default.
- W2020223838 hasAuthorship W2020223838A5078484855 @default.
- W2020223838 hasBestOaLocation W20202238381 @default.
- W2020223838 hasConcept C11413529 @default.
- W2020223838 hasConcept C124101348 @default.
- W2020223838 hasConcept C136886441 @default.
- W2020223838 hasConcept C144024400 @default.
- W2020223838 hasConcept C153180895 @default.
- W2020223838 hasConcept C154945302 @default.
- W2020223838 hasConcept C162984825 @default.
- W2020223838 hasConcept C177264268 @default.
- W2020223838 hasConcept C19165224 @default.
- W2020223838 hasConcept C199360897 @default.
- W2020223838 hasConcept C41008148 @default.
- W2020223838 hasConcept C48044578 @default.
- W2020223838 hasConcept C58489278 @default.
- W2020223838 hasConcept C75165309 @default.
- W2020223838 hasConcept C77088390 @default.
- W2020223838 hasConceptScore W2020223838C11413529 @default.
- W2020223838 hasConceptScore W2020223838C124101348 @default.
- W2020223838 hasConceptScore W2020223838C136886441 @default.
- W2020223838 hasConceptScore W2020223838C144024400 @default.
- W2020223838 hasConceptScore W2020223838C153180895 @default.
- W2020223838 hasConceptScore W2020223838C154945302 @default.
- W2020223838 hasConceptScore W2020223838C162984825 @default.
- W2020223838 hasConceptScore W2020223838C177264268 @default.
- W2020223838 hasConceptScore W2020223838C19165224 @default.
- W2020223838 hasConceptScore W2020223838C199360897 @default.
- W2020223838 hasConceptScore W2020223838C41008148 @default.
- W2020223838 hasConceptScore W2020223838C48044578 @default.
- W2020223838 hasConceptScore W2020223838C58489278 @default.
- W2020223838 hasConceptScore W2020223838C75165309 @default.
- W2020223838 hasConceptScore W2020223838C77088390 @default.
- W2020223838 hasIssue "1" @default.
- W2020223838 hasLocation W20202238381 @default.
- W2020223838 hasLocation W20202238382 @default.
- W2020223838 hasLocation W20202238383 @default.
- W2020223838 hasLocation W20202238384 @default.
- W2020223838 hasOpenAccess W2020223838 @default.
- W2020223838 hasPrimaryLocation W20202238381 @default.
- W2020223838 hasRelatedWork W1480922982 @default.
- W2020223838 hasRelatedWork W1558963043 @default.
- W2020223838 hasRelatedWork W2004162156 @default.