Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020234003> ?p ?o ?g. }
- W2020234003 abstract "This paper deals with networked, dynamical multi-agent systems (MAS) trying to reach consensus about their states subject to uncertain data transfer and noisy measurements. For this, an analogy between the deterministic consensus protocol and a Gaussian process is established. First, the consensus problem is modeled as a stochastic process to consider uncertain initial states and noisy information flow over the network. Next, necessary conditions for decentral inference are derived, two decentral approximative inference protocols are developed and the dependency between communication density and approximation error is presented. Furthermore, a provably convergent and computationally efficient Gaussian consensus protocol is realized. Finally, it is shown that taking measurement noise into account the Gaussian consensus protocol naturally extends to a decentralized Kalman filter for consensus systems." @default.
- W2020234003 created "2016-06-24" @default.
- W2020234003 creator A5001777411 @default.
- W2020234003 creator A5021520369 @default.
- W2020234003 creator A5041286516 @default.
- W2020234003 date "2014-06-01" @default.
- W2020234003 modified "2023-09-30" @default.
- W2020234003 title "Decentralized Bayesian consensus over networks" @default.
- W2020234003 cites W1516393385 @default.
- W2020234003 cites W1575388622 @default.
- W2020234003 cites W1583662412 @default.
- W2020234003 cites W1593770252 @default.
- W2020234003 cites W1606147224 @default.
- W2020234003 cites W1663973292 @default.
- W2020234003 cites W1928313821 @default.
- W2020234003 cites W1964647857 @default.
- W2020234003 cites W1970786657 @default.
- W2020234003 cites W1998692453 @default.
- W2020234003 cites W1999350500 @default.
- W2020234003 cites W2001400508 @default.
- W2020234003 cites W20105556 @default.
- W2020234003 cites W2013347238 @default.
- W2020234003 cites W2046051708 @default.
- W2020234003 cites W2068254488 @default.
- W2020234003 cites W2096890951 @default.
- W2020234003 cites W2105801225 @default.
- W2020234003 cites W2110575115 @default.
- W2020234003 cites W2116677897 @default.
- W2020234003 cites W2123498684 @default.
- W2020234003 cites W2151844982 @default.
- W2020234003 cites W2158191982 @default.
- W2020234003 cites W2159080219 @default.
- W2020234003 cites W2160643434 @default.
- W2020234003 cites W2295244470 @default.
- W2020234003 cites W2912391240 @default.
- W2020234003 cites W613360614 @default.
- W2020234003 doi "https://doi.org/10.1109/ecc.2014.6862220" @default.
- W2020234003 hasPublicationYear "2014" @default.
- W2020234003 type Work @default.
- W2020234003 sameAs 2020234003 @default.
- W2020234003 citedByCount "1" @default.
- W2020234003 countsByYear W20202340032019 @default.
- W2020234003 crossrefType "proceedings-article" @default.
- W2020234003 hasAuthorship W2020234003A5001777411 @default.
- W2020234003 hasAuthorship W2020234003A5021520369 @default.
- W2020234003 hasAuthorship W2020234003A5041286516 @default.
- W2020234003 hasConcept C107107730 @default.
- W2020234003 hasConcept C121332964 @default.
- W2020234003 hasConcept C126255220 @default.
- W2020234003 hasConcept C142724271 @default.
- W2020234003 hasConcept C154945302 @default.
- W2020234003 hasConcept C157286648 @default.
- W2020234003 hasConcept C163716315 @default.
- W2020234003 hasConcept C204787440 @default.
- W2020234003 hasConcept C2776214188 @default.
- W2020234003 hasConcept C2780385302 @default.
- W2020234003 hasConcept C33923547 @default.
- W2020234003 hasConcept C41008148 @default.
- W2020234003 hasConcept C41550386 @default.
- W2020234003 hasConcept C61326573 @default.
- W2020234003 hasConcept C62520636 @default.
- W2020234003 hasConcept C71924100 @default.
- W2020234003 hasConcept C80444323 @default.
- W2020234003 hasConceptScore W2020234003C107107730 @default.
- W2020234003 hasConceptScore W2020234003C121332964 @default.
- W2020234003 hasConceptScore W2020234003C126255220 @default.
- W2020234003 hasConceptScore W2020234003C142724271 @default.
- W2020234003 hasConceptScore W2020234003C154945302 @default.
- W2020234003 hasConceptScore W2020234003C157286648 @default.
- W2020234003 hasConceptScore W2020234003C163716315 @default.
- W2020234003 hasConceptScore W2020234003C204787440 @default.
- W2020234003 hasConceptScore W2020234003C2776214188 @default.
- W2020234003 hasConceptScore W2020234003C2780385302 @default.
- W2020234003 hasConceptScore W2020234003C33923547 @default.
- W2020234003 hasConceptScore W2020234003C41008148 @default.
- W2020234003 hasConceptScore W2020234003C41550386 @default.
- W2020234003 hasConceptScore W2020234003C61326573 @default.
- W2020234003 hasConceptScore W2020234003C62520636 @default.
- W2020234003 hasConceptScore W2020234003C71924100 @default.
- W2020234003 hasConceptScore W2020234003C80444323 @default.
- W2020234003 hasLocation W20202340031 @default.
- W2020234003 hasOpenAccess W2020234003 @default.
- W2020234003 hasPrimaryLocation W20202340031 @default.
- W2020234003 hasRelatedWork W168429698 @default.
- W2020234003 hasRelatedWork W2042178410 @default.
- W2020234003 hasRelatedWork W2067084375 @default.
- W2020234003 hasRelatedWork W2110563546 @default.
- W2020234003 hasRelatedWork W2305604653 @default.
- W2020234003 hasRelatedWork W2515792973 @default.
- W2020234003 hasRelatedWork W2736098254 @default.
- W2020234003 hasRelatedWork W2801392513 @default.
- W2020234003 hasRelatedWork W2950508523 @default.
- W2020234003 hasRelatedWork W2953102529 @default.
- W2020234003 hasRelatedWork W2963420199 @default.
- W2020234003 hasRelatedWork W2992078288 @default.
- W2020234003 hasRelatedWork W3036424127 @default.
- W2020234003 hasRelatedWork W3095545958 @default.
- W2020234003 hasRelatedWork W3098365488 @default.
- W2020234003 hasRelatedWork W3130577547 @default.
- W2020234003 hasRelatedWork W3153907232 @default.