Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020241645> ?p ?o ?g. }
- W2020241645 endingPage "225" @default.
- W2020241645 startingPage "222" @default.
- W2020241645 abstract "Most industrial processes make use of heterogeneous catalysts, which typically consist of nanometre-sized particles of metal or metal oxide dispersed on a solid support material. Any attempt to unravel how such complex systems function requires detailed information on the morphology and chemical composition of the catalysts during operation. Microspectroscopy methods have now advanced to a stage where this challenge can be tackled. Using a specially designed nanoreactor and scanning transmission X-ray microscopy, de Smit et al. have achieved direct imaging of an iron-based Fisher–Tropsch catalyst with nanometre-resolution and reveal how changes in the catalyst correlate with its activity. The same approach could help understand — and improve — other heterogeneous catalysts and important chemical processes occurring at surfaces. The modern chemical industry uses heterogeneous catalysts in almost every production process1. They commonly consist of nanometre-size active components (typically metals or metal oxides) dispersed on a high-surface-area solid support, with performance depending on the catalysts’ nanometre-size features and on interactions involving the active components, the support and the reactant and product molecules. To gain insight into the mechanisms of heterogeneous catalysts, which could guide the design of improved or novel catalysts, it is thus necessary to have a detailed characterization of the physicochemical composition of heterogeneous catalysts in their working state at the nanometre scale1,2. Scanning probe microscopy methods have been used to study inorganic catalyst phases at subnanometre resolution3,4,5,6, but detailed chemical information of the materials in their working state is often difficult to obtain5,6,7. By contrast, optical microspectroscopic approaches offer much flexibility for in situ chemical characterization; however, this comes at the expense of limited spatial resolution8,9,10,11. A recent development promising high spatial resolution and chemical characterization capabilities is scanning transmission X-ray microscopy4,12,13, which has been used in a proof-of-principle study to characterize a solid catalyst14. Here we show that when adapting a nanoreactor specially designed for high-resolution electron microscopy7, scanning transmission X-ray microscopy can be used at atmospheric pressure and up to 350 °C to monitor in situ phase changes in a complex iron-based Fisher–Tropsch catalyst and the nature and location of carbon species produced. We expect that our system, which is capable of operating up to 500 °C, will open new opportunities for nanometre-resolution imaging of a range of important chemical processes taking place on solids in gaseous or liquid environments." @default.
- W2020241645 created "2016-06-24" @default.
- W2020241645 creator A5006112425 @default.
- W2020241645 creator A5006317862 @default.
- W2020241645 creator A5030491286 @default.
- W2020241645 creator A5035824146 @default.
- W2020241645 creator A5052699796 @default.
- W2020241645 creator A5053188243 @default.
- W2020241645 creator A5054072555 @default.
- W2020241645 creator A5055250388 @default.
- W2020241645 creator A5060153301 @default.
- W2020241645 creator A5063777390 @default.
- W2020241645 creator A5084277493 @default.
- W2020241645 date "2008-11-01" @default.
- W2020241645 modified "2023-10-16" @default.
- W2020241645 title "Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy" @default.
- W2020241645 cites W1545025748 @default.
- W2020241645 cites W1971302485 @default.
- W2020241645 cites W1979619336 @default.
- W2020241645 cites W1981792803 @default.
- W2020241645 cites W1986035637 @default.
- W2020241645 cites W2009589086 @default.
- W2020241645 cites W2009741028 @default.
- W2020241645 cites W2012676960 @default.
- W2020241645 cites W2020499438 @default.
- W2020241645 cites W2023910207 @default.
- W2020241645 cites W2035223939 @default.
- W2020241645 cites W2038362223 @default.
- W2020241645 cites W2042809741 @default.
- W2020241645 cites W2043018643 @default.
- W2020241645 cites W2054900848 @default.
- W2020241645 cites W2055516975 @default.
- W2020241645 cites W2058512015 @default.
- W2020241645 cites W2063034523 @default.
- W2020241645 cites W2071567332 @default.
- W2020241645 cites W2076434279 @default.
- W2020241645 cites W2083446790 @default.
- W2020241645 cites W2087469466 @default.
- W2020241645 cites W2095232864 @default.
- W2020241645 cites W2100519713 @default.
- W2020241645 cites W2110216745 @default.
- W2020241645 cites W2112364779 @default.
- W2020241645 cites W2116535686 @default.
- W2020241645 cites W2162349158 @default.
- W2020241645 cites W619106852 @default.
- W2020241645 doi "https://doi.org/10.1038/nature07516" @default.
- W2020241645 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19005551" @default.
- W2020241645 hasPublicationYear "2008" @default.
- W2020241645 type Work @default.
- W2020241645 sameAs 2020241645 @default.
- W2020241645 citedByCount "360" @default.
- W2020241645 countsByYear W20202416452012 @default.
- W2020241645 countsByYear W20202416452013 @default.
- W2020241645 countsByYear W20202416452014 @default.
- W2020241645 countsByYear W20202416452015 @default.
- W2020241645 countsByYear W20202416452016 @default.
- W2020241645 countsByYear W20202416452017 @default.
- W2020241645 countsByYear W20202416452018 @default.
- W2020241645 countsByYear W20202416452019 @default.
- W2020241645 countsByYear W20202416452020 @default.
- W2020241645 countsByYear W20202416452021 @default.
- W2020241645 countsByYear W20202416452022 @default.
- W2020241645 countsByYear W20202416452023 @default.
- W2020241645 crossrefType "journal-article" @default.
- W2020241645 hasAuthorship W2020241645A5006112425 @default.
- W2020241645 hasAuthorship W2020241645A5006317862 @default.
- W2020241645 hasAuthorship W2020241645A5030491286 @default.
- W2020241645 hasAuthorship W2020241645A5035824146 @default.
- W2020241645 hasAuthorship W2020241645A5052699796 @default.
- W2020241645 hasAuthorship W2020241645A5053188243 @default.
- W2020241645 hasAuthorship W2020241645A5054072555 @default.
- W2020241645 hasAuthorship W2020241645A5055250388 @default.
- W2020241645 hasAuthorship W2020241645A5060153301 @default.
- W2020241645 hasAuthorship W2020241645A5063777390 @default.
- W2020241645 hasAuthorship W2020241645A5084277493 @default.
- W2020241645 hasBestOaLocation W20202416452 @default.
- W2020241645 hasConcept C127413603 @default.
- W2020241645 hasConcept C154945302 @default.
- W2020241645 hasConcept C155672457 @default.
- W2020241645 hasConcept C159078339 @default.
- W2020241645 hasConcept C159985019 @default.
- W2020241645 hasConcept C161790260 @default.
- W2020241645 hasConcept C171250308 @default.
- W2020241645 hasConcept C175583648 @default.
- W2020241645 hasConcept C178790620 @default.
- W2020241645 hasConcept C185592680 @default.
- W2020241645 hasConcept C190818770 @default.
- W2020241645 hasConcept C191897082 @default.
- W2020241645 hasConcept C192562407 @default.
- W2020241645 hasConcept C2779851234 @default.
- W2020241645 hasConcept C2780841128 @default.
- W2020241645 hasConcept C41008148 @default.
- W2020241645 hasConcept C42360764 @default.
- W2020241645 hasConcept C45206210 @default.
- W2020241645 hasConcept C65597285 @default.
- W2020241645 hasConcept C77066764 @default.
- W2020241645 hasConceptScore W2020241645C127413603 @default.
- W2020241645 hasConceptScore W2020241645C154945302 @default.