Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020251698> ?p ?o ?g. }
- W2020251698 abstract "Reactive nitrogen/oxygen species (ROS/RNS) at low concentrations play an important role in regulating cell function, signaling, and immune response but in unregulated concentrations are detrimental to cell viability. While living systems have evolved with endogenous and dietary antioxidant defense mechanisms to regulate ROS generation, ROS are produced continuously as natural by-products of normal metabolism of oxygen and can cause oxidative damage to biomolecules resulting in loss of protein function, DNA cleavage, or lipid peroxidation, and ultimately to oxidative stress leading to cell injury or death. Superoxide radical anion (O2•-) is the major precursor of some of the most highly oxidizing species known to exist in biological systems such as peroxynitrite and hydroxyl radical. The generation of O2•- signals the first sign of oxidative burst, and therefore, its detection and/or sequestration in biological systems is important. In this demonstration, O2•- was generated from polymorphonuclear neutrophils (PMNs). Through chemotactic stimulation with phorbol-12-myristate-13-acetate (PMA), PMN generates O2•- via activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Nitric oxide (NO) synthase which comes in three isoforms, as inducible-, neuronal- and endothelial-NOS, or iNOS, nNOS or eNOS, respectively, catalyzes the conversion of L- arginine to L-citrulline, using NADPH to produce NO. Here, we generated NO from endothelial cells. Under oxidative stress conditions, eNOS for example can switch from producing NO to O2•- in a process called uncoupling, which is believed to be caused by oxidation of heme or the co-factor, tetrahydrobiopterin (BH4). There are only few reliable methods for the detection of free radicals in biological systems but are limited by specificity and sensitivity. Spin trapping is commonly used for the identification of free radicals and involves the addition reaction of a radical to a spin trap forming a persistent spin adduct which can be detected by electron paramagnetic resonance (EPR) spectroscopy. The various radical adducts exhibit distinctive spectrum which can be used to identify the radicals being generated and can provide a wealth of information about the nature and kinetics of radical production. The cyclic nitrones, 5,5-dimethyl-pyrroline-N-oxide, DMPO, the phosphoryl-substituted DEPMPO, and the ester-substituted, EMPO and BMPO, have been widely employed as spin traps--the latter spin traps exhibiting longer half-lives for O2•- adduct. Iron (II)-N-methyl-D-glucamine dithiocarbamate, Fe(MGD)2 is commonly used to trap NO due to high rate of adduct formation and the high stability of the spin adduct." @default.
- W2020251698 created "2016-06-24" @default.
- W2020251698 creator A5007881879 @default.
- W2020251698 creator A5037836263 @default.
- W2020251698 creator A5064367878 @default.
- W2020251698 creator A5078766533 @default.
- W2020251698 date "2012-08-18" @default.
- W2020251698 modified "2023-09-25" @default.
- W2020251698 title "Detection of Nitric Oxide and Superoxide Radical Anion by Electron Paramagnetic Resonance Spectroscopy from Cells using Spin Traps" @default.
- W2020251698 cites W1525040827 @default.
- W2020251698 cites W1531686138 @default.
- W2020251698 cites W1591325634 @default.
- W2020251698 cites W1939067428 @default.
- W2020251698 cites W1954647396 @default.
- W2020251698 cites W1967556203 @default.
- W2020251698 cites W1970851794 @default.
- W2020251698 cites W1984693449 @default.
- W2020251698 cites W1985370646 @default.
- W2020251698 cites W1991952977 @default.
- W2020251698 cites W2004394318 @default.
- W2020251698 cites W2006532994 @default.
- W2020251698 cites W2009272954 @default.
- W2020251698 cites W2013150802 @default.
- W2020251698 cites W2022189535 @default.
- W2020251698 cites W2022485446 @default.
- W2020251698 cites W2024952685 @default.
- W2020251698 cites W2026425756 @default.
- W2020251698 cites W2035220305 @default.
- W2020251698 cites W2064450459 @default.
- W2020251698 cites W2068102085 @default.
- W2020251698 cites W2080643266 @default.
- W2020251698 cites W2084433782 @default.
- W2020251698 cites W2380354478 @default.
- W2020251698 doi "https://doi.org/10.3791/2810" @default.
- W2020251698 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3486746" @default.
- W2020251698 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22929836" @default.
- W2020251698 hasPublicationYear "2012" @default.
- W2020251698 type Work @default.
- W2020251698 sameAs 2020251698 @default.
- W2020251698 citedByCount "23" @default.
- W2020251698 countsByYear W20202516982014 @default.
- W2020251698 countsByYear W20202516982015 @default.
- W2020251698 countsByYear W20202516982016 @default.
- W2020251698 countsByYear W20202516982017 @default.
- W2020251698 countsByYear W20202516982018 @default.
- W2020251698 countsByYear W20202516982019 @default.
- W2020251698 countsByYear W20202516982020 @default.
- W2020251698 countsByYear W20202516982021 @default.
- W2020251698 countsByYear W20202516982022 @default.
- W2020251698 countsByYear W20202516982023 @default.
- W2020251698 crossrefType "journal-article" @default.
- W2020251698 hasAuthorship W2020251698A5007881879 @default.
- W2020251698 hasAuthorship W2020251698A5037836263 @default.
- W2020251698 hasAuthorship W2020251698A5064367878 @default.
- W2020251698 hasAuthorship W2020251698A5078766533 @default.
- W2020251698 hasBestOaLocation W20202516982 @default.
- W2020251698 hasConcept C178790620 @default.
- W2020251698 hasConcept C181199279 @default.
- W2020251698 hasConcept C185592680 @default.
- W2020251698 hasConcept C2776145790 @default.
- W2020251698 hasConcept C2776151105 @default.
- W2020251698 hasConcept C2777209548 @default.
- W2020251698 hasConcept C2777622882 @default.
- W2020251698 hasConcept C2777989768 @default.
- W2020251698 hasConcept C2778784160 @default.
- W2020251698 hasConcept C2779525624 @default.
- W2020251698 hasConcept C2779719074 @default.
- W2020251698 hasConcept C2780795997 @default.
- W2020251698 hasConcept C38485361 @default.
- W2020251698 hasConcept C48349386 @default.
- W2020251698 hasConcept C519581460 @default.
- W2020251698 hasConcept C55493867 @default.
- W2020251698 hasConcept C86803240 @default.
- W2020251698 hasConcept C95444343 @default.
- W2020251698 hasConcept C99971728 @default.
- W2020251698 hasConceptScore W2020251698C178790620 @default.
- W2020251698 hasConceptScore W2020251698C181199279 @default.
- W2020251698 hasConceptScore W2020251698C185592680 @default.
- W2020251698 hasConceptScore W2020251698C2776145790 @default.
- W2020251698 hasConceptScore W2020251698C2776151105 @default.
- W2020251698 hasConceptScore W2020251698C2777209548 @default.
- W2020251698 hasConceptScore W2020251698C2777622882 @default.
- W2020251698 hasConceptScore W2020251698C2777989768 @default.
- W2020251698 hasConceptScore W2020251698C2778784160 @default.
- W2020251698 hasConceptScore W2020251698C2779525624 @default.
- W2020251698 hasConceptScore W2020251698C2779719074 @default.
- W2020251698 hasConceptScore W2020251698C2780795997 @default.
- W2020251698 hasConceptScore W2020251698C38485361 @default.
- W2020251698 hasConceptScore W2020251698C48349386 @default.
- W2020251698 hasConceptScore W2020251698C519581460 @default.
- W2020251698 hasConceptScore W2020251698C55493867 @default.
- W2020251698 hasConceptScore W2020251698C86803240 @default.
- W2020251698 hasConceptScore W2020251698C95444343 @default.
- W2020251698 hasConceptScore W2020251698C99971728 @default.
- W2020251698 hasIssue "66" @default.
- W2020251698 hasLocation W20202516981 @default.
- W2020251698 hasLocation W20202516982 @default.
- W2020251698 hasLocation W20202516983 @default.
- W2020251698 hasLocation W20202516984 @default.
- W2020251698 hasOpenAccess W2020251698 @default.