Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020261034> ?p ?o ?g. }
- W2020261034 endingPage "282" @default.
- W2020261034 startingPage "269" @default.
- W2020261034 abstract "This paper presents a novel approach to semiautomatic building extraction in informal settlement areas from aerial photographs. The proposed approach uses a strategy of delineating buildings by optimising their approximate building contour position. Approximate building contours are derived automatically by locating elevation blobs in digital surface models. Building extraction is then effected by means of the snakes algorithm and the dynamic programming optimisation technique. With dynamic programming, the building contour optimisation problem is realized through a discrete multistage process and solved by the “time-delayed” algorithm, as developed in this work. The proposed building extraction approach is a semiautomatic process, with user-controlled operations linking fully automated subprocesses. Inputs into the proposed building extraction system are ortho-images and digital surface models, the latter being generated through image matching techniques. Buildings are modeled as “lumps” or elevation blobs in digital surface models, which are derived by altimetric thresholding of digital surface models. Initial windows for building extraction are provided by projecting the elevation blobs centre points onto an ortho-image. In the next step, approximate building contours are extracted from the ortho-image by region growing constrained by edges. Approximate building contours thus derived are inputs into the dynamic programming optimisation process in which final building contours are established. The proposed system is tested on two study areas: Marconi Beam in Cape Town, South Africa, and Manzese in Dar es Salaam, Tanzania. Sixty percent of buildings in the study areas have been extracted and verified and it is concluded that the proposed approach contributes meaningfully to the extraction of buildings in moderately complex and crowded informal settlement areas." @default.
- W2020261034 created "2016-06-24" @default.
- W2020261034 creator A5000171172 @default.
- W2020261034 creator A5014617117 @default.
- W2020261034 creator A5021073699 @default.
- W2020261034 date "2002-07-01" @default.
- W2020261034 modified "2023-10-02" @default.
- W2020261034 title "Application of snakes and dynamic programming optimisation technique in modeling of buildings in informal settlement areas" @default.
- W2020261034 cites W1990117759 @default.
- W2020261034 cites W1999691838 @default.
- W2020261034 cites W2018492565 @default.
- W2020261034 cites W2024918151 @default.
- W2020261034 cites W2063658793 @default.
- W2020261034 cites W2104095591 @default.
- W2020261034 cites W2131910503 @default.
- W2020261034 cites W2154741421 @default.
- W2020261034 cites W4234709060 @default.
- W2020261034 doi "https://doi.org/10.1016/s0924-2716(02)00062-x" @default.
- W2020261034 hasPublicationYear "2002" @default.
- W2020261034 type Work @default.
- W2020261034 sameAs 2020261034 @default.
- W2020261034 citedByCount "76" @default.
- W2020261034 countsByYear W20202610342012 @default.
- W2020261034 countsByYear W20202610342013 @default.
- W2020261034 countsByYear W20202610342014 @default.
- W2020261034 countsByYear W20202610342015 @default.
- W2020261034 countsByYear W20202610342016 @default.
- W2020261034 countsByYear W20202610342018 @default.
- W2020261034 countsByYear W20202610342019 @default.
- W2020261034 countsByYear W20202610342020 @default.
- W2020261034 countsByYear W20202610342021 @default.
- W2020261034 countsByYear W20202610342022 @default.
- W2020261034 countsByYear W20202610342023 @default.
- W2020261034 crossrefType "journal-article" @default.
- W2020261034 hasAuthorship W2020261034A5000171172 @default.
- W2020261034 hasAuthorship W2020261034A5014617117 @default.
- W2020261034 hasAuthorship W2020261034A5021073699 @default.
- W2020261034 hasConcept C10138342 @default.
- W2020261034 hasConcept C105795698 @default.
- W2020261034 hasConcept C111919701 @default.
- W2020261034 hasConcept C11413529 @default.
- W2020261034 hasConcept C115961682 @default.
- W2020261034 hasConcept C127413603 @default.
- W2020261034 hasConcept C136764020 @default.
- W2020261034 hasConcept C145097563 @default.
- W2020261034 hasConcept C154945302 @default.
- W2020261034 hasConcept C162324750 @default.
- W2020261034 hasConcept C165064840 @default.
- W2020261034 hasConcept C181843262 @default.
- W2020261034 hasConcept C191178318 @default.
- W2020261034 hasConcept C198082294 @default.
- W2020261034 hasConcept C205649164 @default.
- W2020261034 hasConcept C2777063073 @default.
- W2020261034 hasConcept C2778530916 @default.
- W2020261034 hasConcept C31972630 @default.
- W2020261034 hasConcept C33923547 @default.
- W2020261034 hasConcept C37054046 @default.
- W2020261034 hasConcept C37404715 @default.
- W2020261034 hasConcept C41008148 @default.
- W2020261034 hasConcept C44154836 @default.
- W2020261034 hasConcept C62649853 @default.
- W2020261034 hasConcept C66938386 @default.
- W2020261034 hasConcept C98045186 @default.
- W2020261034 hasConceptScore W2020261034C10138342 @default.
- W2020261034 hasConceptScore W2020261034C105795698 @default.
- W2020261034 hasConceptScore W2020261034C111919701 @default.
- W2020261034 hasConceptScore W2020261034C11413529 @default.
- W2020261034 hasConceptScore W2020261034C115961682 @default.
- W2020261034 hasConceptScore W2020261034C127413603 @default.
- W2020261034 hasConceptScore W2020261034C136764020 @default.
- W2020261034 hasConceptScore W2020261034C145097563 @default.
- W2020261034 hasConceptScore W2020261034C154945302 @default.
- W2020261034 hasConceptScore W2020261034C162324750 @default.
- W2020261034 hasConceptScore W2020261034C165064840 @default.
- W2020261034 hasConceptScore W2020261034C181843262 @default.
- W2020261034 hasConceptScore W2020261034C191178318 @default.
- W2020261034 hasConceptScore W2020261034C198082294 @default.
- W2020261034 hasConceptScore W2020261034C205649164 @default.
- W2020261034 hasConceptScore W2020261034C2777063073 @default.
- W2020261034 hasConceptScore W2020261034C2778530916 @default.
- W2020261034 hasConceptScore W2020261034C31972630 @default.
- W2020261034 hasConceptScore W2020261034C33923547 @default.
- W2020261034 hasConceptScore W2020261034C37054046 @default.
- W2020261034 hasConceptScore W2020261034C37404715 @default.
- W2020261034 hasConceptScore W2020261034C41008148 @default.
- W2020261034 hasConceptScore W2020261034C44154836 @default.
- W2020261034 hasConceptScore W2020261034C62649853 @default.
- W2020261034 hasConceptScore W2020261034C66938386 @default.
- W2020261034 hasConceptScore W2020261034C98045186 @default.
- W2020261034 hasIssue "4" @default.
- W2020261034 hasLocation W20202610341 @default.
- W2020261034 hasOpenAccess W2020261034 @default.
- W2020261034 hasPrimaryLocation W20202610341 @default.
- W2020261034 hasRelatedWork W2025797634 @default.
- W2020261034 hasRelatedWork W2055210187 @default.
- W2020261034 hasRelatedWork W2059612401 @default.
- W2020261034 hasRelatedWork W2223320490 @default.
- W2020261034 hasRelatedWork W2349347303 @default.