Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020271151> ?p ?o ?g. }
- W2020271151 endingPage "50" @default.
- W2020271151 startingPage "1" @default.
- W2020271151 abstract "The task of similarity search is widely used in various areas of computing, including multimedia databases, data mining, bioinformatics, social networks, etc. In fact, retrieval of semantically unstructured data entities requires a form of aggregated qualification that selects entities relevant to a query. A popular type of such a mechanism is similarity querying. For a long time, the database-oriented applications of similarity search employed the definition of similarity restricted to metric distances. Due to its topological properties, metric similarity can be effectively used to index a database which can then be queried efficiently by so-called metric access methods. However, together with the increasing complexity of data entities across various domains, in recent years there appeared many similarities that were not metrics—we call them nonmetric similarity functions. In this article we survey domains employing nonmetric functions for effective similarity search, and methods for efficient nonmetric similarity search. First, we show that the ongoing research in many of these domains requires complex representations of data entities. Simultaneously, such complex representations allow us to model also complex and computationally expensive similarity functions (often represented by various matching algorithms). However, the more complex similarity function one develops, the more likely it will be a nonmetric. Second, we review state-of-the-art techniques for efficient (fast) nonmetric similarity search, concerning both exact and approximate search. Finally, we discuss some open problems and possible future research trends." @default.
- W2020271151 created "2016-06-24" @default.
- W2020271151 creator A5009309241 @default.
- W2020271151 creator A5013042933 @default.
- W2020271151 date "2011-10-01" @default.
- W2020271151 modified "2023-09-30" @default.
- W2020271151 title "On nonmetric similarity search problems in complex domains" @default.
- W2020271151 cites W1512547254 @default.
- W2020271151 cites W1523512006 @default.
- W2020271151 cites W1544103676 @default.
- W2020271151 cites W1585221131 @default.
- W2020271151 cites W1603845670 @default.
- W2020271151 cites W1837120581 @default.
- W2020271151 cites W1880945766 @default.
- W2020271151 cites W1972073131 @default.
- W2020271151 cites W1973236871 @default.
- W2020271151 cites W1978569932 @default.
- W2020271151 cites W1979147581 @default.
- W2020271151 cites W1983870925 @default.
- W2020271151 cites W1993492933 @default.
- W2020271151 cites W1994410331 @default.
- W2020271151 cites W1994655805 @default.
- W2020271151 cites W1998384440 @default.
- W2020271151 cites W2005797502 @default.
- W2020271151 cites W2013162218 @default.
- W2020271151 cites W2017395661 @default.
- W2020271151 cites W2017483902 @default.
- W2020271151 cites W2018295310 @default.
- W2020271151 cites W2018546346 @default.
- W2020271151 cites W2018857832 @default.
- W2020271151 cites W2021674293 @default.
- W2020271151 cites W2022058405 @default.
- W2020271151 cites W2028936054 @default.
- W2020271151 cites W2029195137 @default.
- W2020271151 cites W2031136493 @default.
- W2020271151 cites W2034528422 @default.
- W2020271151 cites W2037955148 @default.
- W2020271151 cites W2038044292 @default.
- W2020271151 cites W2039561007 @default.
- W2020271151 cites W2049644877 @default.
- W2020271151 cites W2055043387 @default.
- W2020271151 cites W2059378307 @default.
- W2020271151 cites W2059439590 @default.
- W2020271151 cites W2059975159 @default.
- W2020271151 cites W2061360855 @default.
- W2020271151 cites W2062556965 @default.
- W2020271151 cites W2062903088 @default.
- W2020271151 cites W2063392856 @default.
- W2020271151 cites W2066796814 @default.
- W2020271151 cites W2074231493 @default.
- W2020271151 cites W2078321579 @default.
- W2020271151 cites W2081599077 @default.
- W2020271151 cites W2087064593 @default.
- W2020271151 cites W2091921805 @default.
- W2020271151 cites W2096635897 @default.
- W2020271151 cites W2096729078 @default.
- W2020271151 cites W2097130513 @default.
- W2020271151 cites W2100034399 @default.
- W2020271151 cites W2101586458 @default.
- W2020271151 cites W2102913801 @default.
- W2020271151 cites W2105134313 @default.
- W2020271151 cites W2107686700 @default.
- W2020271151 cites W2107779728 @default.
- W2020271151 cites W2108053094 @default.
- W2020271151 cites W2108138353 @default.
- W2020271151 cites W2110254452 @default.
- W2020271151 cites W2111643688 @default.
- W2020271151 cites W2111993661 @default.
- W2020271151 cites W2114670894 @default.
- W2020271151 cites W2116487896 @default.
- W2020271151 cites W2117501368 @default.
- W2020271151 cites W2118371392 @default.
- W2020271151 cites W2118851904 @default.
- W2020271151 cites W2120412255 @default.
- W2020271151 cites W2121179064 @default.
- W2020271151 cites W2124222502 @default.
- W2020271151 cites W2126016150 @default.
- W2020271151 cites W2126114994 @default.
- W2020271151 cites W2128759588 @default.
- W2020271151 cites W2129430460 @default.
- W2020271151 cites W2134155890 @default.
- W2020271151 cites W2134624785 @default.
- W2020271151 cites W2136567909 @default.
- W2020271151 cites W2137489772 @default.
- W2020271151 cites W2142965177 @default.
- W2020271151 cites W2142995284 @default.
- W2020271151 cites W2143210482 @default.
- W2020271151 cites W2145425472 @default.
- W2020271151 cites W2146117179 @default.
- W2020271151 cites W2151135734 @default.
- W2020271151 cites W2152825437 @default.
- W2020271151 cites W2157912840 @default.
- W2020271151 cites W2160754664 @default.
- W2020271151 cites W2162804104 @default.
- W2020271151 cites W2164312060 @default.
- W2020271151 cites W2164422236 @default.
- W2020271151 cites W2164947855 @default.
- W2020271151 cites W2165299010 @default.