Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020271854> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2020271854 endingPage "1170" @default.
- W2020271854 startingPage "1161" @default.
- W2020271854 abstract "Discrete wavelet transform (DWT) denoising contains three steps: forward transformation of the signal to the wavelet domain, reduction of the wavelet coefficients, and inverse transformation to the native domain. Three aspects that should be considered for DWT denoising include selecting the wavelet type, selecting the threshold, and applying the threshold to the wavelet coefficients. Although there exists an infinite variety of wavelet transformations, 22 orthonormal wavelet transforms that are typically used, which include Haar, 9 daublets, 5 coiflets, and 7 symmlets, were evaluated. Four threshold selection methods have been studied: universal, minimax, Stein's unbiased estimate of risk (SURE), and minimum description length (MDL) criteria. The application of the threshold to the wavelet coefficients includes global (hard, soft, garrote, and firm), level-dependent, data-dependent, translation invariant (TI), and wavelet package transform (WPT) thresholding methods. The different DWT-based denoising methods were evaluated by using synthetic data containing white Gaussian noise. The results of comparison have shown that most DWTs are very powerful methods for denoising and that the MDL and the TI methods are practical. The MDL criterion is the only method that can select a threshold for wavelet coefficients and select an optimal transform type. The TI method is insensitive to the wavelet filter so that for a variety of wavelet filters equivalent results were obtained. Savitzky−Golay and Fourier transform denoising results were used as reference methods. IR and HPLC data were used to compare denoising methods." @default.
- W2020271854 created "2016-06-24" @default.
- W2020271854 creator A5011112463 @default.
- W2020271854 creator A5036989044 @default.
- W2020271854 date "1998-09-25" @default.
- W2020271854 modified "2023-09-27" @default.
- W2020271854 title "Different Discrete Wavelet Transforms Applied to Denoising Analytical Data" @default.
- W2020271854 cites W1595114968 @default.
- W2020271854 cites W1977829188 @default.
- W2020271854 cites W2019003441 @default.
- W2020271854 cites W2021315680 @default.
- W2020271854 cites W2029152224 @default.
- W2020271854 cites W2032806448 @default.
- W2020271854 cites W2052558954 @default.
- W2020271854 cites W2054640142 @default.
- W2020271854 cites W2055682942 @default.
- W2020271854 cites W2058439899 @default.
- W2020271854 cites W2060150799 @default.
- W2020271854 cites W2071816567 @default.
- W2020271854 cites W2073615679 @default.
- W2020271854 cites W2079724595 @default.
- W2020271854 cites W2082480681 @default.
- W2020271854 cites W2109606373 @default.
- W2020271854 cites W2146842127 @default.
- W2020271854 cites W2156447271 @default.
- W2020271854 cites W2158940042 @default.
- W2020271854 cites W4238943743 @default.
- W2020271854 cites W4240337472 @default.
- W2020271854 cites W4255272544 @default.
- W2020271854 cites W59771946 @default.
- W2020271854 doi "https://doi.org/10.1021/ci980210j" @default.
- W2020271854 hasPublicationYear "1998" @default.
- W2020271854 type Work @default.
- W2020271854 sameAs 2020271854 @default.
- W2020271854 citedByCount "60" @default.
- W2020271854 countsByYear W20202718542012 @default.
- W2020271854 countsByYear W20202718542013 @default.
- W2020271854 countsByYear W20202718542014 @default.
- W2020271854 countsByYear W20202718542016 @default.
- W2020271854 countsByYear W20202718542017 @default.
- W2020271854 countsByYear W20202718542018 @default.
- W2020271854 countsByYear W20202718542019 @default.
- W2020271854 countsByYear W20202718542020 @default.
- W2020271854 countsByYear W20202718542021 @default.
- W2020271854 countsByYear W20202718542022 @default.
- W2020271854 countsByYear W20202718542023 @default.
- W2020271854 crossrefType "journal-article" @default.
- W2020271854 hasAuthorship W2020271854A5011112463 @default.
- W2020271854 hasAuthorship W2020271854A5036989044 @default.
- W2020271854 hasConcept C1109138 @default.
- W2020271854 hasConcept C111350171 @default.
- W2020271854 hasConcept C11413529 @default.
- W2020271854 hasConcept C153180895 @default.
- W2020271854 hasConcept C154945302 @default.
- W2020271854 hasConcept C155777637 @default.
- W2020271854 hasConcept C196216189 @default.
- W2020271854 hasConcept C199550912 @default.
- W2020271854 hasConcept C33923547 @default.
- W2020271854 hasConcept C41008148 @default.
- W2020271854 hasConcept C46286280 @default.
- W2020271854 hasConcept C47432892 @default.
- W2020271854 hasConcept C73339587 @default.
- W2020271854 hasConcept C88829872 @default.
- W2020271854 hasConceptScore W2020271854C1109138 @default.
- W2020271854 hasConceptScore W2020271854C111350171 @default.
- W2020271854 hasConceptScore W2020271854C11413529 @default.
- W2020271854 hasConceptScore W2020271854C153180895 @default.
- W2020271854 hasConceptScore W2020271854C154945302 @default.
- W2020271854 hasConceptScore W2020271854C155777637 @default.
- W2020271854 hasConceptScore W2020271854C196216189 @default.
- W2020271854 hasConceptScore W2020271854C199550912 @default.
- W2020271854 hasConceptScore W2020271854C33923547 @default.
- W2020271854 hasConceptScore W2020271854C41008148 @default.
- W2020271854 hasConceptScore W2020271854C46286280 @default.
- W2020271854 hasConceptScore W2020271854C47432892 @default.
- W2020271854 hasConceptScore W2020271854C73339587 @default.
- W2020271854 hasConceptScore W2020271854C88829872 @default.
- W2020271854 hasIssue "6" @default.
- W2020271854 hasLocation W20202718541 @default.
- W2020271854 hasOpenAccess W2020271854 @default.
- W2020271854 hasPrimaryLocation W20202718541 @default.
- W2020271854 hasRelatedWork W1588899229 @default.
- W2020271854 hasRelatedWork W1918078477 @default.
- W2020271854 hasRelatedWork W2023142747 @default.
- W2020271854 hasRelatedWork W2059234650 @default.
- W2020271854 hasRelatedWork W2085792030 @default.
- W2020271854 hasRelatedWork W2168173318 @default.
- W2020271854 hasRelatedWork W2274421086 @default.
- W2020271854 hasRelatedWork W2355386503 @default.
- W2020271854 hasRelatedWork W2391053410 @default.
- W2020271854 hasRelatedWork W2543503053 @default.
- W2020271854 hasVolume "38" @default.
- W2020271854 isParatext "false" @default.
- W2020271854 isRetracted "false" @default.
- W2020271854 magId "2020271854" @default.
- W2020271854 workType "article" @default.