Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020356918> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2020356918 endingPage "716" @default.
- W2020356918 startingPage "703" @default.
- W2020356918 abstract "This paper presents a new approach to classified vector quantization in the discrete cosine transform domain (DCT/CVQ) for image compression. While most existing DCT/CVQ methods determine class features through experiences or by studying the properties of the DCT, the proposed method attempts to extract actual class features from training images utilizing a neural network model, referred to as the self-organizing feature map (SOFM). The codebook of each class is also designed using SOFM after allocating coding bits to each class with the BFOS algorithm. In the experiments using monochromatic benchmark images, the proposed approach provided 1.07dB ~ 1.57dB higher peak signal-to-noise ratios, (PSNRs) than the JPEG baseline system for training images at comparable bit rates. For other benchmark images, the approach improved the PSNR by up to 0.41dB compared with the JPEG baseline system, and by up to 0.38dB compared with an existing DCT/CVQ method that uses the Linde-Buzo-Gray (LBG) algorithm for codebook design, depending on the bit rate used." @default.
- W2020356918 created "2016-06-24" @default.
- W2020356918 creator A5008941641 @default.
- W2020356918 creator A5036266021 @default.
- W2020356918 date "1996-06-01" @default.
- W2020356918 modified "2023-09-26" @default.
- W2020356918 title "Image vector quantization using a two-stage self-organizing feature map" @default.
- W2020356918 cites W1982718114 @default.
- W2020356918 cites W1990517717 @default.
- W2020356918 cites W1990866607 @default.
- W2020356918 cites W2031245628 @default.
- W2020356918 cites W2031614119 @default.
- W2020356918 cites W2086614154 @default.
- W2020356918 cites W2086688151 @default.
- W2020356918 cites W2118683576 @default.
- W2020356918 cites W2123741565 @default.
- W2020356918 cites W2134222103 @default.
- W2020356918 cites W2134383396 @default.
- W2020356918 cites W2135879701 @default.
- W2020356918 cites W2140196014 @default.
- W2020356918 cites W2144837541 @default.
- W2020356918 cites W2152037928 @default.
- W2020356918 cites W2163889646 @default.
- W2020356918 cites W4300402905 @default.
- W2020356918 doi "https://doi.org/10.1080/002072196136986" @default.
- W2020356918 hasPublicationYear "1996" @default.
- W2020356918 type Work @default.
- W2020356918 sameAs 2020356918 @default.
- W2020356918 citedByCount "0" @default.
- W2020356918 crossrefType "journal-article" @default.
- W2020356918 hasAuthorship W2020356918A5008941641 @default.
- W2020356918 hasAuthorship W2020356918A5036266021 @default.
- W2020356918 hasConcept C111919701 @default.
- W2020356918 hasConcept C115961682 @default.
- W2020356918 hasConcept C118505674 @default.
- W2020356918 hasConcept C127759330 @default.
- W2020356918 hasConcept C13280743 @default.
- W2020356918 hasConcept C13481523 @default.
- W2020356918 hasConcept C138885662 @default.
- W2020356918 hasConcept C153180895 @default.
- W2020356918 hasConcept C154945302 @default.
- W2020356918 hasConcept C185798385 @default.
- W2020356918 hasConcept C198751489 @default.
- W2020356918 hasConcept C199833920 @default.
- W2020356918 hasConcept C205649164 @default.
- W2020356918 hasConcept C2221639 @default.
- W2020356918 hasConcept C2776401178 @default.
- W2020356918 hasConcept C28855332 @default.
- W2020356918 hasConcept C31972630 @default.
- W2020356918 hasConcept C33923547 @default.
- W2020356918 hasConcept C41008148 @default.
- W2020356918 hasConcept C41895202 @default.
- W2020356918 hasConcept C78548338 @default.
- W2020356918 hasConcept C93372532 @default.
- W2020356918 hasConcept C9417928 @default.
- W2020356918 hasConceptScore W2020356918C111919701 @default.
- W2020356918 hasConceptScore W2020356918C115961682 @default.
- W2020356918 hasConceptScore W2020356918C118505674 @default.
- W2020356918 hasConceptScore W2020356918C127759330 @default.
- W2020356918 hasConceptScore W2020356918C13280743 @default.
- W2020356918 hasConceptScore W2020356918C13481523 @default.
- W2020356918 hasConceptScore W2020356918C138885662 @default.
- W2020356918 hasConceptScore W2020356918C153180895 @default.
- W2020356918 hasConceptScore W2020356918C154945302 @default.
- W2020356918 hasConceptScore W2020356918C185798385 @default.
- W2020356918 hasConceptScore W2020356918C198751489 @default.
- W2020356918 hasConceptScore W2020356918C199833920 @default.
- W2020356918 hasConceptScore W2020356918C205649164 @default.
- W2020356918 hasConceptScore W2020356918C2221639 @default.
- W2020356918 hasConceptScore W2020356918C2776401178 @default.
- W2020356918 hasConceptScore W2020356918C28855332 @default.
- W2020356918 hasConceptScore W2020356918C31972630 @default.
- W2020356918 hasConceptScore W2020356918C33923547 @default.
- W2020356918 hasConceptScore W2020356918C41008148 @default.
- W2020356918 hasConceptScore W2020356918C41895202 @default.
- W2020356918 hasConceptScore W2020356918C78548338 @default.
- W2020356918 hasConceptScore W2020356918C93372532 @default.
- W2020356918 hasConceptScore W2020356918C9417928 @default.
- W2020356918 hasIssue "6" @default.
- W2020356918 hasLocation W20203569181 @default.
- W2020356918 hasOpenAccess W2020356918 @default.
- W2020356918 hasPrimaryLocation W20203569181 @default.
- W2020356918 hasRelatedWork W13775620 @default.
- W2020356918 hasRelatedWork W1971114951 @default.
- W2020356918 hasRelatedWork W2129693240 @default.
- W2020356918 hasRelatedWork W2157217299 @default.
- W2020356918 hasRelatedWork W2160210563 @default.
- W2020356918 hasRelatedWork W2357873238 @default.
- W2020356918 hasRelatedWork W2366258965 @default.
- W2020356918 hasRelatedWork W4310608238 @default.
- W2020356918 hasRelatedWork W2082897291 @default.
- W2020356918 hasRelatedWork W2113507171 @default.
- W2020356918 hasVolume "80" @default.
- W2020356918 isParatext "false" @default.
- W2020356918 isRetracted "false" @default.
- W2020356918 magId "2020356918" @default.
- W2020356918 workType "article" @default.