Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020393567> ?p ?o ?g. }
- W2020393567 endingPage "9" @default.
- W2020393567 startingPage "1" @default.
- W2020393567 abstract "Because of the ever‐increasing number of signals that can be measured within a single run by modern platforms in analytical chemistry, life sciences datasets become not only gradually larger but also more intricate in their structures. Challenges related to making use of this wealth of data include extracting relevant elements within massive amounts of signals possibly spread across different tables, reducing dimensionality, summarising dynamic information in a comprehensible way and displaying it for interpretation purposes. Metabolomics constitutes a representative example of fast‐moving research fields taking advantage of recent technological advances to provide extensive sample monitoring. Because of the wide chemical diversity of metabolites, several analytical setups are required to provide a broad coverage of complex samples. The integration and visualisation of multiple highly multivariate datasets constitute key issues for effective analysis leading to valuable biological or chemical knowledge. Additionally, high‐order data structures arise from experimental setups involving time‐resolved measurements. These data are intrinsically multiway, and classical statistical tools cannot be applied without altering their organisation with the risk of information loss. Dedicated modelling algorithms, able to cope with the inherent properties of these metabolomic datasets, are therefore mandatory for harnessing their complexity and provide relevant information. In that perspective, chemometrics has a central role to play. Copyright © 2013 John Wiley & Sons, Ltd." @default.
- W2020393567 created "2016-06-24" @default.
- W2020393567 creator A5071473009 @default.
- W2020393567 creator A5090734509 @default.
- W2020393567 date "2013-11-12" @default.
- W2020393567 modified "2023-10-09" @default.
- W2020393567 title "Harnessing the complexity of metabolomic data with chemometrics" @default.
- W2020393567 cites W12572720 @default.
- W2020393567 cites W1963826206 @default.
- W2020393567 cites W1963991144 @default.
- W2020393567 cites W1968206427 @default.
- W2020393567 cites W1973778137 @default.
- W2020393567 cites W1974403130 @default.
- W2020393567 cites W1974777883 @default.
- W2020393567 cites W1975356106 @default.
- W2020393567 cites W1975532543 @default.
- W2020393567 cites W1981678262 @default.
- W2020393567 cites W1983878349 @default.
- W2020393567 cites W1985635711 @default.
- W2020393567 cites W1987972238 @default.
- W2020393567 cites W1988001416 @default.
- W2020393567 cites W1988165548 @default.
- W2020393567 cites W1989786408 @default.
- W2020393567 cites W1990745503 @default.
- W2020393567 cites W1992483596 @default.
- W2020393567 cites W1996195892 @default.
- W2020393567 cites W2001217060 @default.
- W2020393567 cites W2005273845 @default.
- W2020393567 cites W2010862425 @default.
- W2020393567 cites W2011635427 @default.
- W2020393567 cites W2013527957 @default.
- W2020393567 cites W2019872977 @default.
- W2020393567 cites W2020158945 @default.
- W2020393567 cites W2027075612 @default.
- W2020393567 cites W2030917828 @default.
- W2020393567 cites W2032599625 @default.
- W2020393567 cites W2034243016 @default.
- W2020393567 cites W2036583236 @default.
- W2020393567 cites W2037983106 @default.
- W2020393567 cites W2038281828 @default.
- W2020393567 cites W2039140169 @default.
- W2020393567 cites W2040805429 @default.
- W2020393567 cites W2043842833 @default.
- W2020393567 cites W2047057949 @default.
- W2020393567 cites W2052563964 @default.
- W2020393567 cites W2066567543 @default.
- W2020393567 cites W2069044703 @default.
- W2020393567 cites W2074875978 @default.
- W2020393567 cites W2086126109 @default.
- W2020393567 cites W2086251769 @default.
- W2020393567 cites W2090552208 @default.
- W2020393567 cites W2091634599 @default.
- W2020393567 cites W2096322543 @default.
- W2020393567 cites W2098562143 @default.
- W2020393567 cites W2100452303 @default.
- W2020393567 cites W2101098894 @default.
- W2020393567 cites W2101717127 @default.
- W2020393567 cites W2104709532 @default.
- W2020393567 cites W2111115065 @default.
- W2020393567 cites W2118186775 @default.
- W2020393567 cites W2118301338 @default.
- W2020393567 cites W2119479037 @default.
- W2020393567 cites W2123685407 @default.
- W2020393567 cites W2134926220 @default.
- W2020393567 cites W2142316424 @default.
- W2020393567 cites W2146892804 @default.
- W2020393567 cites W2147323090 @default.
- W2020393567 cites W2147703419 @default.
- W2020393567 cites W2150985501 @default.
- W2020393567 cites W2157120783 @default.
- W2020393567 cites W2158218864 @default.
- W2020393567 cites W2158827997 @default.
- W2020393567 cites W2163043810 @default.
- W2020393567 cites W2170590937 @default.
- W2020393567 cites W2506890028 @default.
- W2020393567 cites W4240255376 @default.
- W2020393567 cites W4242107499 @default.
- W2020393567 cites W4294326454 @default.
- W2020393567 doi "https://doi.org/10.1002/cem.2567" @default.
- W2020393567 hasPublicationYear "2013" @default.
- W2020393567 type Work @default.
- W2020393567 sameAs 2020393567 @default.
- W2020393567 citedByCount "85" @default.
- W2020393567 countsByYear W20203935672014 @default.
- W2020393567 countsByYear W20203935672015 @default.
- W2020393567 countsByYear W20203935672016 @default.
- W2020393567 countsByYear W20203935672017 @default.
- W2020393567 countsByYear W20203935672018 @default.
- W2020393567 countsByYear W20203935672019 @default.
- W2020393567 countsByYear W20203935672020 @default.
- W2020393567 countsByYear W20203935672021 @default.
- W2020393567 countsByYear W20203935672022 @default.
- W2020393567 countsByYear W20203935672023 @default.
- W2020393567 crossrefType "journal-article" @default.
- W2020393567 hasAuthorship W2020393567A5071473009 @default.
- W2020393567 hasAuthorship W2020393567A5090734509 @default.
- W2020393567 hasBestOaLocation W20203935671 @default.
- W2020393567 hasConcept C111030470 @default.