Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020405262> ?p ?o ?g. }
- W2020405262 endingPage "1222" @default.
- W2020405262 startingPage "1218" @default.
- W2020405262 abstract "X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 Å), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex1. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 Å generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with Rfree (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5–5 Å resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction2 as well as data from new X-ray light sources3. Use of homology information is not restricted to X-ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution4,5, it can use similar tools." @default.
- W2020405262 created "2016-06-24" @default.
- W2020405262 creator A5010095324 @default.
- W2020405262 creator A5019080704 @default.
- W2020405262 creator A5019402916 @default.
- W2020405262 date "2010-04-01" @default.
- W2020405262 modified "2023-09-26" @default.
- W2020405262 title "Super-resolution biomolecular crystallography with low-resolution data" @default.
- W2020405262 cites W1970197953 @default.
- W2020405262 cites W1971600026 @default.
- W2020405262 cites W1980292953 @default.
- W2020405262 cites W1993390869 @default.
- W2020405262 cites W1995017064 @default.
- W2020405262 cites W2001575235 @default.
- W2020405262 cites W2002143420 @default.
- W2020405262 cites W2011912423 @default.
- W2020405262 cites W2017421343 @default.
- W2020405262 cites W2024497315 @default.
- W2020405262 cites W2026661081 @default.
- W2020405262 cites W2029195137 @default.
- W2020405262 cites W2033767661 @default.
- W2020405262 cites W2034038760 @default.
- W2020405262 cites W2042987185 @default.
- W2020405262 cites W2046141572 @default.
- W2020405262 cites W2053197719 @default.
- W2020405262 cites W2056331547 @default.
- W2020405262 cites W2065283382 @default.
- W2020405262 cites W2080089116 @default.
- W2020405262 cites W2084584451 @default.
- W2020405262 cites W2088686292 @default.
- W2020405262 cites W2089052645 @default.
- W2020405262 cites W2092875818 @default.
- W2020405262 cites W2102245393 @default.
- W2020405262 cites W2110207495 @default.
- W2020405262 cites W2110483430 @default.
- W2020405262 cites W2116275717 @default.
- W2020405262 cites W2118755520 @default.
- W2020405262 cites W2125304058 @default.
- W2020405262 cites W2128827201 @default.
- W2020405262 cites W2132351632 @default.
- W2020405262 cites W2134216529 @default.
- W2020405262 cites W2146679548 @default.
- W2020405262 cites W2152997134 @default.
- W2020405262 cites W2155836823 @default.
- W2020405262 cites W2157615131 @default.
- W2020405262 doi "https://doi.org/10.1038/nature08892" @default.
- W2020405262 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2859093" @default.
- W2020405262 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20376006" @default.
- W2020405262 hasPublicationYear "2010" @default.
- W2020405262 type Work @default.
- W2020405262 sameAs 2020405262 @default.
- W2020405262 citedByCount "271" @default.
- W2020405262 countsByYear W20204052622012 @default.
- W2020405262 countsByYear W20204052622013 @default.
- W2020405262 countsByYear W20204052622014 @default.
- W2020405262 countsByYear W20204052622015 @default.
- W2020405262 countsByYear W20204052622016 @default.
- W2020405262 countsByYear W20204052622017 @default.
- W2020405262 countsByYear W20204052622018 @default.
- W2020405262 countsByYear W20204052622019 @default.
- W2020405262 countsByYear W20204052622020 @default.
- W2020405262 countsByYear W20204052622021 @default.
- W2020405262 countsByYear W20204052622022 @default.
- W2020405262 countsByYear W20204052622023 @default.
- W2020405262 crossrefType "journal-article" @default.
- W2020405262 hasAuthorship W2020405262A5010095324 @default.
- W2020405262 hasAuthorship W2020405262A5019080704 @default.
- W2020405262 hasAuthorship W2020405262A5019402916 @default.
- W2020405262 hasBestOaLocation W20204052622 @default.
- W2020405262 hasConcept C104317684 @default.
- W2020405262 hasConcept C112247285 @default.
- W2020405262 hasConcept C11413529 @default.
- W2020405262 hasConcept C119145174 @default.
- W2020405262 hasConcept C120665830 @default.
- W2020405262 hasConcept C121332964 @default.
- W2020405262 hasConcept C127313418 @default.
- W2020405262 hasConcept C138268822 @default.
- W2020405262 hasConcept C154945302 @default.
- W2020405262 hasConcept C165525559 @default.
- W2020405262 hasConcept C185592680 @default.
- W2020405262 hasConcept C186060115 @default.
- W2020405262 hasConcept C207114421 @default.
- W2020405262 hasConcept C3019883945 @default.
- W2020405262 hasConcept C3020199158 @default.
- W2020405262 hasConcept C41008148 @default.
- W2020405262 hasConcept C47701112 @default.
- W2020405262 hasConcept C50515024 @default.
- W2020405262 hasConcept C55493867 @default.
- W2020405262 hasConcept C62649853 @default.
- W2020405262 hasConcept C8010536 @default.
- W2020405262 hasConcept C86803240 @default.
- W2020405262 hasConceptScore W2020405262C104317684 @default.
- W2020405262 hasConceptScore W2020405262C112247285 @default.
- W2020405262 hasConceptScore W2020405262C11413529 @default.
- W2020405262 hasConceptScore W2020405262C119145174 @default.
- W2020405262 hasConceptScore W2020405262C120665830 @default.
- W2020405262 hasConceptScore W2020405262C121332964 @default.
- W2020405262 hasConceptScore W2020405262C127313418 @default.