Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020411041> ?p ?o ?g. }
- W2020411041 endingPage "742" @default.
- W2020411041 startingPage "729" @default.
- W2020411041 abstract "Despite the relatively long-standing availability of numerical approaches for estimating palaeogeotherms using peridotite xenolith Pressure–Temperature (P–T) data, the practise of fitting xenolith P–T arrays to simple models of lithospheric heat generation, in a non-quantitative manner, remains widespread. The lack of quantification in both the magnitude and uncertainty of heat flow and lithosphere thickness estimates leads to difficulty in evaluating proposed models for lithosphere evolution on a local and regional scale. Here, we explore the advantages of using a numerical approach to palaeogeotherm fitting, in terms of the ability to make objective comparisons of the effect that differing thermobarometer combinations and varying states of mineral and textural equilibrium have on the shape of the palaeogeotherm, and the resulting estimates of lithospheric thickness and heat flow. We also make quantitative comparisons between lithospheric mantle properties estimated using peridotite xenoliths versus single mineral xenocrysts. Using two reference peridotite xenolith databases from Bultfontein (S. Africa) and Somerset Island (Canada) we show that the same lithospheric mantle properties are predicted using harzburgite versus lherzolite thermobarometry methods. Filtering mineral data for the effects of inter-mineral disequilibrium does not produce significantly different palaeogeotherms but does increase the quality of fit of the palaeogeotherm to the P–T data, allowing more confidence to be placed in comparisons between locations. Palaeogeotherms calculated using xenocryst data, screened for peridotitic affinities, show misfits that are 2–3 times greater than those obtained using xenoliths. Lithospheric properties calculated from the Somerset Island xenocryst-based geotherm yield results that are within error of the xenolith estimate. A mutually consistent and quantitative palaeogeotherm fitting approach is used to evaluate existing hypotheses for the evolution of the southern African lithosphere. We find very similar estimates for the heat flow and thickness of the lithosphere between SW Namibia (off-craton) and Bultfontein (on-craton). This supports suggestions of a cratonic thermal regime and equivalent lithospheric thickness across that region of southern Africa at the time of kimberlite sampling, with concurrent local thermal disturbance evident in Namibia. Complimentary, novel, seismically-obtained geotherm estimates show that the lithosphere in Namibia is now significantly thinner than the estimate at 70 Ma obtained from xenolith thermobarometry." @default.
- W2020411041 created "2016-06-24" @default.
- W2020411041 creator A5010390023 @default.
- W2020411041 creator A5023935968 @default.
- W2020411041 creator A5030586739 @default.
- W2020411041 creator A5056545175 @default.
- W2020411041 creator A5073494117 @default.
- W2020411041 date "2011-07-01" @default.
- W2020411041 modified "2023-10-16" @default.
- W2020411041 title "Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology" @default.
- W2020411041 cites W121579099 @default.
- W2020411041 cites W1520790674 @default.
- W2020411041 cites W1838541061 @default.
- W2020411041 cites W1964169634 @default.
- W2020411041 cites W1967764278 @default.
- W2020411041 cites W1968908020 @default.
- W2020411041 cites W1972935364 @default.
- W2020411041 cites W1973012528 @default.
- W2020411041 cites W1974350253 @default.
- W2020411041 cites W1974428188 @default.
- W2020411041 cites W1987618844 @default.
- W2020411041 cites W1990740187 @default.
- W2020411041 cites W1990805116 @default.
- W2020411041 cites W1991475651 @default.
- W2020411041 cites W1992599763 @default.
- W2020411041 cites W1993020314 @default.
- W2020411041 cites W2001782868 @default.
- W2020411041 cites W2001921874 @default.
- W2020411041 cites W2012177214 @default.
- W2020411041 cites W2018486061 @default.
- W2020411041 cites W2021065582 @default.
- W2020411041 cites W2021677386 @default.
- W2020411041 cites W2023989699 @default.
- W2020411041 cites W2038102789 @default.
- W2020411041 cites W2042372000 @default.
- W2020411041 cites W2046141409 @default.
- W2020411041 cites W2051793567 @default.
- W2020411041 cites W2058672729 @default.
- W2020411041 cites W2068626653 @default.
- W2020411041 cites W2073108717 @default.
- W2020411041 cites W2074511487 @default.
- W2020411041 cites W2077810606 @default.
- W2020411041 cites W2079091258 @default.
- W2020411041 cites W2080683993 @default.
- W2020411041 cites W2082286621 @default.
- W2020411041 cites W2084072312 @default.
- W2020411041 cites W2090072357 @default.
- W2020411041 cites W2091524492 @default.
- W2020411041 cites W2092867808 @default.
- W2020411041 cites W2096956171 @default.
- W2020411041 cites W2097381052 @default.
- W2020411041 cites W2099995121 @default.
- W2020411041 cites W2107362240 @default.
- W2020411041 cites W2108298625 @default.
- W2020411041 cites W2113070569 @default.
- W2020411041 cites W2119745544 @default.
- W2020411041 cites W2120685923 @default.
- W2020411041 cites W2123410601 @default.
- W2020411041 cites W2142937339 @default.
- W2020411041 cites W2146073301 @default.
- W2020411041 cites W2146973893 @default.
- W2020411041 cites W2149433543 @default.
- W2020411041 cites W2164467626 @default.
- W2020411041 cites W2170349491 @default.
- W2020411041 cites W2266383339 @default.
- W2020411041 cites W2506019063 @default.
- W2020411041 cites W4237388965 @default.
- W2020411041 doi "https://doi.org/10.1016/j.lithos.2011.04.003" @default.
- W2020411041 hasPublicationYear "2011" @default.
- W2020411041 type Work @default.
- W2020411041 sameAs 2020411041 @default.
- W2020411041 citedByCount "112" @default.
- W2020411041 countsByYear W20204110412012 @default.
- W2020411041 countsByYear W20204110412013 @default.
- W2020411041 countsByYear W20204110412014 @default.
- W2020411041 countsByYear W20204110412015 @default.
- W2020411041 countsByYear W20204110412016 @default.
- W2020411041 countsByYear W20204110412017 @default.
- W2020411041 countsByYear W20204110412018 @default.
- W2020411041 countsByYear W20204110412019 @default.
- W2020411041 countsByYear W20204110412020 @default.
- W2020411041 countsByYear W20204110412021 @default.
- W2020411041 countsByYear W20204110412022 @default.
- W2020411041 countsByYear W20204110412023 @default.
- W2020411041 crossrefType "journal-article" @default.
- W2020411041 hasAuthorship W2020411041A5010390023 @default.
- W2020411041 hasAuthorship W2020411041A5023935968 @default.
- W2020411041 hasAuthorship W2020411041A5030586739 @default.
- W2020411041 hasAuthorship W2020411041A5056545175 @default.
- W2020411041 hasAuthorship W2020411041A5073494117 @default.
- W2020411041 hasConcept C111766609 @default.
- W2020411041 hasConcept C127313418 @default.
- W2020411041 hasConcept C165205528 @default.
- W2020411041 hasConcept C167919410 @default.
- W2020411041 hasConcept C16942324 @default.
- W2020411041 hasConcept C17409809 @default.
- W2020411041 hasConcept C42796848 @default.
- W2020411041 hasConcept C5900021 @default.