Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020423872> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2020423872 abstract "This paper proposes a method for segmenting an unstructured dirt road in color space images using color and texture analysis. A support vector machine (SVM) classifier was trained on samples of on and off road patches from a similar road. Image patches were classified at sparse intervals at a fixed distance from the vehicle. Each patch is described by the Histogram of oriented gradients (HOG), the Local Binary Patters (LBP), a histogram of the color channel, and a histogram of a non linear color transform. The classified patches were transformed to the next frame of the sequence using the scale invariant feature transform (SIFT) to reduce reclassification of image patches. Morphological opening and closing were used to transform the points into a mask, and reduce errors. Experimental results indicated that the algorithm can accurately segment road images given a set of training data from similar road utilizing only color imagery." @default.
- W2020423872 created "2016-06-24" @default.
- W2020423872 creator A5018303984 @default.
- W2020423872 creator A5031397502 @default.
- W2020423872 creator A5060329217 @default.
- W2020423872 creator A5080000111 @default.
- W2020423872 date "2012-07-01" @default.
- W2020423872 modified "2023-10-05" @default.
- W2020423872 title "Dirt road segmentation using color and texture features in color imagery" @default.
- W2020423872 cites W2021199414 @default.
- W2020423872 cites W2026579345 @default.
- W2020423872 cites W2087347434 @default.
- W2020423872 cites W2094056275 @default.
- W2020423872 cites W2098908730 @default.
- W2020423872 cites W2108149748 @default.
- W2020423872 cites W2117471449 @default.
- W2020423872 cites W2142446297 @default.
- W2020423872 cites W2150440820 @default.
- W2020423872 cites W2151103935 @default.
- W2020423872 cites W2153635508 @default.
- W2020423872 cites W2160477239 @default.
- W2020423872 cites W2161969291 @default.
- W2020423872 cites W2168705645 @default.
- W2020423872 cites W2171913220 @default.
- W2020423872 cites W2051727245 @default.
- W2020423872 doi "https://doi.org/10.1109/cisda.2012.6291522" @default.
- W2020423872 hasPublicationYear "2012" @default.
- W2020423872 type Work @default.
- W2020423872 sameAs 2020423872 @default.
- W2020423872 citedByCount "3" @default.
- W2020423872 countsByYear W20204238722013 @default.
- W2020423872 countsByYear W20204238722014 @default.
- W2020423872 countsByYear W20204238722019 @default.
- W2020423872 crossrefType "proceedings-article" @default.
- W2020423872 hasAuthorship W2020423872A5018303984 @default.
- W2020423872 hasAuthorship W2020423872A5031397502 @default.
- W2020423872 hasAuthorship W2020423872A5060329217 @default.
- W2020423872 hasAuthorship W2020423872A5080000111 @default.
- W2020423872 hasConcept C115961682 @default.
- W2020423872 hasConcept C12043971 @default.
- W2020423872 hasConcept C124504099 @default.
- W2020423872 hasConcept C142616399 @default.
- W2020423872 hasConcept C153180895 @default.
- W2020423872 hasConcept C154945302 @default.
- W2020423872 hasConcept C2961294 @default.
- W2020423872 hasConcept C31972630 @default.
- W2020423872 hasConcept C41008148 @default.
- W2020423872 hasConcept C52622490 @default.
- W2020423872 hasConcept C53533937 @default.
- W2020423872 hasConcept C61265191 @default.
- W2020423872 hasConcept C87335442 @default.
- W2020423872 hasConcept C89600930 @default.
- W2020423872 hasConcept C9417928 @default.
- W2020423872 hasConceptScore W2020423872C115961682 @default.
- W2020423872 hasConceptScore W2020423872C12043971 @default.
- W2020423872 hasConceptScore W2020423872C124504099 @default.
- W2020423872 hasConceptScore W2020423872C142616399 @default.
- W2020423872 hasConceptScore W2020423872C153180895 @default.
- W2020423872 hasConceptScore W2020423872C154945302 @default.
- W2020423872 hasConceptScore W2020423872C2961294 @default.
- W2020423872 hasConceptScore W2020423872C31972630 @default.
- W2020423872 hasConceptScore W2020423872C41008148 @default.
- W2020423872 hasConceptScore W2020423872C52622490 @default.
- W2020423872 hasConceptScore W2020423872C53533937 @default.
- W2020423872 hasConceptScore W2020423872C61265191 @default.
- W2020423872 hasConceptScore W2020423872C87335442 @default.
- W2020423872 hasConceptScore W2020423872C89600930 @default.
- W2020423872 hasConceptScore W2020423872C9417928 @default.
- W2020423872 hasLocation W20204238721 @default.
- W2020423872 hasOpenAccess W2020423872 @default.
- W2020423872 hasPrimaryLocation W20204238721 @default.
- W2020423872 hasRelatedWork W1966028303 @default.
- W2020423872 hasRelatedWork W2051471177 @default.
- W2020423872 hasRelatedWork W2057648587 @default.
- W2020423872 hasRelatedWork W2092660904 @default.
- W2020423872 hasRelatedWork W2114979702 @default.
- W2020423872 hasRelatedWork W2367986462 @default.
- W2020423872 hasRelatedWork W2550539038 @default.
- W2020423872 hasRelatedWork W2903192400 @default.
- W2020423872 hasRelatedWork W3112881166 @default.
- W2020423872 hasRelatedWork W3134180396 @default.
- W2020423872 isParatext "false" @default.
- W2020423872 isRetracted "false" @default.
- W2020423872 magId "2020423872" @default.
- W2020423872 workType "article" @default.