Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020457998> ?p ?o ?g. }
- W2020457998 endingPage "16" @default.
- W2020457998 startingPage "1" @default.
- W2020457998 abstract "This paper evaluates the use of standard regional groundwater flow models in predicting regional patterns of water chemistry based on wellwater samples. The regional groundwater flow in a moderately sized sandstone aquifer has been represented using a time-variant, three layer numerical model typical of those developed for water resource management. Reverse particle tracking was used to determine the implied age distribution of the water in the aquifer and the age structure and recharge location of the wellwaters at the time of sampling. At the regional scale, the model age predictions are broadly consistent with a pre-existing interpretation of wellwater chemistry, though the model suggests a complexity far greater than could be mapped using the 150 wells from which analyses were available. The main features of the chemical distribution pattern are controlled to a significant degree by the pre-abstraction flows within the aquifer, even though heavy pumping has occurred over a period of more than 100 years. The model suggests that some modern recharge is expected almost everywhere across the aquifer, despite its cover of low permeability Quaternary deposits. At individual wells, wide ranges in water age are often predicted, suggesting that water quality prediction for individual wells is likely to be uncertain, providing an explanation for locations where apparently anomalous wellwater chemistry occurs. We conclude that particle tracking using the implied flow field of a standard regional groundwater flow model has proved very worthwhile in the case studied. It has highlighted uncertainties in both flow and regional qualitative water quality interpretations, has confirmed or revised various explanations associated with water quality distributions, indicates that joint chemical and head calibration is advantageous, and suggests that broad predictions of future water quality changes might be attempted using the same approach, though predictions of the chemistry of individual wells is highly uncertain. The aquifer studied is typical of many sandstone aquifers, and we suggest that particle tracking investigations using existing regional-scale multi-layer, transient models might also be undertaken with advantage elsewhere." @default.
- W2020457998 created "2016-06-24" @default.
- W2020457998 creator A5002795679 @default.
- W2020457998 creator A5009998695 @default.
- W2020457998 creator A5012364461 @default.
- W2020457998 creator A5037692969 @default.
- W2020457998 creator A5054408032 @default.
- W2020457998 creator A5075615586 @default.
- W2020457998 date "2011-02-01" @default.
- W2020457998 modified "2023-09-30" @default.
- W2020457998 title "Using regional groundwater flow models for prediction of regional wellwater quality distributions" @default.
- W2020457998 cites W1532484498 @default.
- W2020457998 cites W1569692353 @default.
- W2020457998 cites W1938981086 @default.
- W2020457998 cites W1965705867 @default.
- W2020457998 cites W1967673535 @default.
- W2020457998 cites W1974339654 @default.
- W2020457998 cites W1980308073 @default.
- W2020457998 cites W1988747203 @default.
- W2020457998 cites W1992036823 @default.
- W2020457998 cites W2007065306 @default.
- W2020457998 cites W2015569189 @default.
- W2020457998 cites W2019521734 @default.
- W2020457998 cites W2023284398 @default.
- W2020457998 cites W2030642000 @default.
- W2020457998 cites W2032340360 @default.
- W2020457998 cites W2034756274 @default.
- W2020457998 cites W2056693768 @default.
- W2020457998 cites W2066492617 @default.
- W2020457998 cites W2077468292 @default.
- W2020457998 cites W2080320152 @default.
- W2020457998 cites W2087936952 @default.
- W2020457998 cites W2100460231 @default.
- W2020457998 cites W2100921710 @default.
- W2020457998 cites W2105565727 @default.
- W2020457998 cites W2106801775 @default.
- W2020457998 cites W2111034967 @default.
- W2020457998 cites W2113209751 @default.
- W2020457998 cites W2115652288 @default.
- W2020457998 cites W2123186889 @default.
- W2020457998 cites W2123311615 @default.
- W2020457998 cites W2123673345 @default.
- W2020457998 cites W2123881241 @default.
- W2020457998 cites W2134252163 @default.
- W2020457998 cites W2146130035 @default.
- W2020457998 cites W2154907004 @default.
- W2020457998 cites W2157217320 @default.
- W2020457998 cites W2158780460 @default.
- W2020457998 cites W2161580405 @default.
- W2020457998 cites W2171838636 @default.
- W2020457998 cites W2324059057 @default.
- W2020457998 cites W2564678793 @default.
- W2020457998 cites W3045356141 @default.
- W2020457998 doi "https://doi.org/10.1016/j.jhydrol.2010.11.022" @default.
- W2020457998 hasPublicationYear "2011" @default.
- W2020457998 type Work @default.
- W2020457998 sameAs 2020457998 @default.
- W2020457998 citedByCount "15" @default.
- W2020457998 countsByYear W20204579982012 @default.
- W2020457998 countsByYear W20204579982013 @default.
- W2020457998 countsByYear W20204579982014 @default.
- W2020457998 countsByYear W20204579982015 @default.
- W2020457998 countsByYear W20204579982016 @default.
- W2020457998 countsByYear W20204579982017 @default.
- W2020457998 countsByYear W20204579982019 @default.
- W2020457998 countsByYear W20204579982020 @default.
- W2020457998 crossrefType "journal-article" @default.
- W2020457998 hasAuthorship W2020457998A5002795679 @default.
- W2020457998 hasAuthorship W2020457998A5009998695 @default.
- W2020457998 hasAuthorship W2020457998A5012364461 @default.
- W2020457998 hasAuthorship W2020457998A5037692969 @default.
- W2020457998 hasAuthorship W2020457998A5054408032 @default.
- W2020457998 hasAuthorship W2020457998A5075615586 @default.
- W2020457998 hasConcept C127313418 @default.
- W2020457998 hasConcept C131227075 @default.
- W2020457998 hasConcept C174091901 @default.
- W2020457998 hasConcept C176650113 @default.
- W2020457998 hasConcept C187320778 @default.
- W2020457998 hasConcept C18903297 @default.
- W2020457998 hasConcept C2524010 @default.
- W2020457998 hasConcept C2780103101 @default.
- W2020457998 hasConcept C2780797713 @default.
- W2020457998 hasConcept C33923547 @default.
- W2020457998 hasConcept C38349280 @default.
- W2020457998 hasConcept C39432304 @default.
- W2020457998 hasConcept C75622301 @default.
- W2020457998 hasConcept C76177295 @default.
- W2020457998 hasConcept C76886044 @default.
- W2020457998 hasConcept C86803240 @default.
- W2020457998 hasConceptScore W2020457998C127313418 @default.
- W2020457998 hasConceptScore W2020457998C131227075 @default.
- W2020457998 hasConceptScore W2020457998C174091901 @default.
- W2020457998 hasConceptScore W2020457998C176650113 @default.
- W2020457998 hasConceptScore W2020457998C187320778 @default.
- W2020457998 hasConceptScore W2020457998C18903297 @default.
- W2020457998 hasConceptScore W2020457998C2524010 @default.
- W2020457998 hasConceptScore W2020457998C2780103101 @default.
- W2020457998 hasConceptScore W2020457998C2780797713 @default.