Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020458316> ?p ?o ?g. }
- W2020458316 endingPage "3527" @default.
- W2020458316 startingPage "3527" @default.
- W2020458316 abstract "Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains Ameer Azam,1,2 Arham S Ahmed,2 M Oves,3 MS Khan,3 Adnan Memic11Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia; 2Center of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, 3Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, IndiaBackground: CuO is one of the most important transition metal oxides due to its captivating properties. It is used in various technological applications such as high critical temperature superconductors, gas sensors, in photoconductive applications, and so on. Recently, it has been used as an antimicrobial agent against various bacterial species. Here we synthesized different sized CuO nanoparticles and explored the size-dependent antibacterial activity of each CuO nanoparticles preparation.Methods: CuO nanoparticles were synthesized using a gel combustion method. In this approach, cupric nitrate trihydrate and citric acid were dissolved in distilled water with a molar ratio of 1:1. The resulting solution was stirred at 100°C, until gel was formed. The gel was allowed to burn at 200°C to obtain amorphous powder, which was further annealed at different temperatures to obtain different size CuO nanoparticles. We then tested the antibacterial properties using well diffusion, minimum inhibitory concentration, and minimum bactericidal concentration methods.Results: XRD spectra confirmed the formation of single phase CuO nanoparticles. Crystallite size was found to increase with an increase in annealing temperature due to atomic diffusion. A minimum crystallite size of 20 nm was observed in the case of CuO nanoparticles annealed at 400°C. Transmission electron microscopy results corroborate well with XRD results. All CuO nanoparticles exhibited inhibitory effects against both Gram-positive and -negative bacteria. The size of the particles was correlated with its antibacterial activity.Conclusion: The antibacterial activity of CuO nanoparticles was found to be size-dependent. In addition, the highly stable minimum-sized monodispersed copper oxide nanoparticles synthesized during this study demonstrated a significant increase in antibacterial activities against both Gram-positive and -negative bacterial strains.Keywords: CuO, nanoparticles, X-ray diffraction, FTIR, antimicrobial activity" @default.
- W2020458316 created "2016-06-24" @default.
- W2020458316 creator A5024696696 @default.
- W2020458316 creator A5035844591 @default.
- W2020458316 creator A5063429801 @default.
- W2020458316 creator A5064573720 @default.
- W2020458316 creator A5080270947 @default.
- W2020458316 date "2012-07-01" @default.
- W2020458316 modified "2023-10-16" @default.
- W2020458316 title "Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains" @default.
- W2020458316 cites W1786053553 @default.
- W2020458316 cites W1963621160 @default.
- W2020458316 cites W1971783595 @default.
- W2020458316 cites W1977421759 @default.
- W2020458316 cites W1978669807 @default.
- W2020458316 cites W1980216394 @default.
- W2020458316 cites W1985000256 @default.
- W2020458316 cites W1987594053 @default.
- W2020458316 cites W1987618104 @default.
- W2020458316 cites W1992115778 @default.
- W2020458316 cites W1997136708 @default.
- W2020458316 cites W1999248315 @default.
- W2020458316 cites W2026438702 @default.
- W2020458316 cites W2029808571 @default.
- W2020458316 cites W2039433532 @default.
- W2020458316 cites W2042133224 @default.
- W2020458316 cites W2049015639 @default.
- W2020458316 cites W2049926758 @default.
- W2020458316 cites W2060319163 @default.
- W2020458316 cites W2062031284 @default.
- W2020458316 cites W2064087796 @default.
- W2020458316 cites W2065319611 @default.
- W2020458316 cites W2067105087 @default.
- W2020458316 cites W2069836582 @default.
- W2020458316 cites W2071052136 @default.
- W2020458316 cites W2072085152 @default.
- W2020458316 cites W2074688754 @default.
- W2020458316 cites W2081745487 @default.
- W2020458316 cites W2086616046 @default.
- W2020458316 cites W2089920994 @default.
- W2020458316 cites W2091475592 @default.
- W2020458316 cites W2103718115 @default.
- W2020458316 cites W2136931384 @default.
- W2020458316 cites W2144838949 @default.
- W2020458316 cites W2171945027 @default.
- W2020458316 cites W2187281369 @default.
- W2020458316 cites W2573421426 @default.
- W2020458316 doi "https://doi.org/10.2147/ijn.s29020" @default.
- W2020458316 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3405874" @default.
- W2020458316 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22848176" @default.
- W2020458316 hasPublicationYear "2012" @default.
- W2020458316 type Work @default.
- W2020458316 sameAs 2020458316 @default.
- W2020458316 citedByCount "591" @default.
- W2020458316 countsByYear W20204583162012 @default.
- W2020458316 countsByYear W20204583162013 @default.
- W2020458316 countsByYear W20204583162014 @default.
- W2020458316 countsByYear W20204583162015 @default.
- W2020458316 countsByYear W20204583162016 @default.
- W2020458316 countsByYear W20204583162017 @default.
- W2020458316 countsByYear W20204583162018 @default.
- W2020458316 countsByYear W20204583162019 @default.
- W2020458316 countsByYear W20204583162020 @default.
- W2020458316 countsByYear W20204583162021 @default.
- W2020458316 countsByYear W20204583162022 @default.
- W2020458316 countsByYear W20204583162023 @default.
- W2020458316 crossrefType "journal-article" @default.
- W2020458316 hasAuthorship W2020458316A5024696696 @default.
- W2020458316 hasAuthorship W2020458316A5035844591 @default.
- W2020458316 hasAuthorship W2020458316A5063429801 @default.
- W2020458316 hasAuthorship W2020458316A5064573720 @default.
- W2020458316 hasAuthorship W2020458316A5080270947 @default.
- W2020458316 hasBestOaLocation W20204583161 @default.
- W2020458316 hasConcept C127413603 @default.
- W2020458316 hasConcept C137637335 @default.
- W2020458316 hasConcept C138631740 @default.
- W2020458316 hasConcept C13965031 @default.
- W2020458316 hasConcept C155672457 @default.
- W2020458316 hasConcept C171250308 @default.
- W2020458316 hasConcept C178790620 @default.
- W2020458316 hasConcept C185592680 @default.
- W2020458316 hasConcept C191897082 @default.
- W2020458316 hasConcept C192562407 @default.
- W2020458316 hasConcept C2780104969 @default.
- W2020458316 hasConcept C38398224 @default.
- W2020458316 hasConcept C42360764 @default.
- W2020458316 hasConcept C4937899 @default.
- W2020458316 hasConcept C523546767 @default.
- W2020458316 hasConcept C54355233 @default.
- W2020458316 hasConcept C56052488 @default.
- W2020458316 hasConcept C8010536 @default.
- W2020458316 hasConcept C86803240 @default.
- W2020458316 hasConceptScore W2020458316C127413603 @default.
- W2020458316 hasConceptScore W2020458316C137637335 @default.
- W2020458316 hasConceptScore W2020458316C138631740 @default.
- W2020458316 hasConceptScore W2020458316C13965031 @default.
- W2020458316 hasConceptScore W2020458316C155672457 @default.
- W2020458316 hasConceptScore W2020458316C171250308 @default.