Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020492074> ?p ?o ?g. }
- W2020492074 abstract "Several models for mortality prediction have been constructed for critically ill patients with haematological malignancies in recent years. These models have proven to be equally or more accurate in predicting hospital mortality in patients with haematological malignancies than ICU severity of illness scores such as the APACHE II or SAPS II [1]. The objective of this study is to compare the accuracy of predicting hospital mortality in patients with haematological malignancies admitted to the ICU between models based on multiple logistic regression (MLR) and support vector machine (SVM) based models. 352 patients with haematological malignancies admitted to the ICU between 1997 and 2006 for a life-threatening complication were included. 252 patient records were used for training of the models and 100 were used for validation. In a first model 12 input variables were included for comparison between MLR and SVM. In a second more complex model 17 input variables were used. MLR and SVM analysis were performed independently from each other. Discrimination was evaluated using the area under the receiver operating characteristic (ROC) curves (± SE). The area under ROC curve for the MLR and SVM in the validation data set were 0.768 (± 0.04) vs. 0.802 (± 0.04) in the first model (p = 0.19) and 0.781 (± 0.05) vs. 0.808 (± 0.04) in the second more complex model (p = 0.44). SVM needed only 4 variables to make its prediction in both models, whereas MLR needed 7 and 8 variables in the first and second model respectively. The discriminative power of both the MLR and SVM models was good. No statistically significant differences were found in discriminative power between MLR and SVM for prediction of hospital mortality in critically ill patients with haematological malignancies." @default.
- W2020492074 created "2016-06-24" @default.
- W2020492074 creator A5014224150 @default.
- W2020492074 creator A5015258847 @default.
- W2020492074 creator A5041323870 @default.
- W2020492074 creator A5051784384 @default.
- W2020492074 creator A5074462456 @default.
- W2020492074 creator A5077260135 @default.
- W2020492074 creator A5084004054 @default.
- W2020492074 date "2008-12-01" @default.
- W2020492074 modified "2023-09-26" @default.
- W2020492074 title "Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies" @default.
- W2020492074 cites W1953430268 @default.
- W2020492074 cites W1964940342 @default.
- W2020492074 cites W1968791966 @default.
- W2020492074 cites W1972164899 @default.
- W2020492074 cites W2000566182 @default.
- W2020492074 cites W2004122607 @default.
- W2020492074 cites W2025783786 @default.
- W2020492074 cites W2056303881 @default.
- W2020492074 cites W2087347434 @default.
- W2020492074 cites W2120499593 @default.
- W2020492074 cites W2132300764 @default.
- W2020492074 cites W2143713767 @default.
- W2020492074 cites W2171674404 @default.
- W2020492074 cites W2328176404 @default.
- W2020492074 doi "https://doi.org/10.1186/1472-6947-8-56" @default.
- W2020492074 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2612652" @default.
- W2020492074 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19061509" @default.
- W2020492074 hasPublicationYear "2008" @default.
- W2020492074 type Work @default.
- W2020492074 sameAs 2020492074 @default.
- W2020492074 citedByCount "94" @default.
- W2020492074 countsByYear W20204920742012 @default.
- W2020492074 countsByYear W20204920742013 @default.
- W2020492074 countsByYear W20204920742014 @default.
- W2020492074 countsByYear W20204920742015 @default.
- W2020492074 countsByYear W20204920742016 @default.
- W2020492074 countsByYear W20204920742017 @default.
- W2020492074 countsByYear W20204920742018 @default.
- W2020492074 countsByYear W20204920742019 @default.
- W2020492074 countsByYear W20204920742020 @default.
- W2020492074 countsByYear W20204920742021 @default.
- W2020492074 countsByYear W20204920742022 @default.
- W2020492074 countsByYear W20204920742023 @default.
- W2020492074 crossrefType "journal-article" @default.
- W2020492074 hasAuthorship W2020492074A5014224150 @default.
- W2020492074 hasAuthorship W2020492074A5015258847 @default.
- W2020492074 hasAuthorship W2020492074A5041323870 @default.
- W2020492074 hasAuthorship W2020492074A5051784384 @default.
- W2020492074 hasAuthorship W2020492074A5074462456 @default.
- W2020492074 hasAuthorship W2020492074A5077260135 @default.
- W2020492074 hasAuthorship W2020492074A5084004054 @default.
- W2020492074 hasBestOaLocation W20204920741 @default.
- W2020492074 hasConcept C105795698 @default.
- W2020492074 hasConcept C119857082 @default.
- W2020492074 hasConcept C12267149 @default.
- W2020492074 hasConcept C126322002 @default.
- W2020492074 hasConcept C151956035 @default.
- W2020492074 hasConcept C2776376669 @default.
- W2020492074 hasConcept C2777371824 @default.
- W2020492074 hasConcept C2780347030 @default.
- W2020492074 hasConcept C33923547 @default.
- W2020492074 hasConcept C41008148 @default.
- W2020492074 hasConcept C58471807 @default.
- W2020492074 hasConcept C71924100 @default.
- W2020492074 hasConcept C97931131 @default.
- W2020492074 hasConceptScore W2020492074C105795698 @default.
- W2020492074 hasConceptScore W2020492074C119857082 @default.
- W2020492074 hasConceptScore W2020492074C12267149 @default.
- W2020492074 hasConceptScore W2020492074C126322002 @default.
- W2020492074 hasConceptScore W2020492074C151956035 @default.
- W2020492074 hasConceptScore W2020492074C2776376669 @default.
- W2020492074 hasConceptScore W2020492074C2777371824 @default.
- W2020492074 hasConceptScore W2020492074C2780347030 @default.
- W2020492074 hasConceptScore W2020492074C33923547 @default.
- W2020492074 hasConceptScore W2020492074C41008148 @default.
- W2020492074 hasConceptScore W2020492074C58471807 @default.
- W2020492074 hasConceptScore W2020492074C71924100 @default.
- W2020492074 hasConceptScore W2020492074C97931131 @default.
- W2020492074 hasIssue "1" @default.
- W2020492074 hasLocation W20204920741 @default.
- W2020492074 hasLocation W20204920742 @default.
- W2020492074 hasLocation W20204920743 @default.
- W2020492074 hasLocation W20204920744 @default.
- W2020492074 hasLocation W20204920745 @default.
- W2020492074 hasLocation W20204920746 @default.
- W2020492074 hasLocation W20204920747 @default.
- W2020492074 hasOpenAccess W2020492074 @default.
- W2020492074 hasPrimaryLocation W20204920741 @default.
- W2020492074 hasRelatedWork W106687611 @default.
- W2020492074 hasRelatedWork W198358475 @default.
- W2020492074 hasRelatedWork W2020492074 @default.
- W2020492074 hasRelatedWork W2082276466 @default.
- W2020492074 hasRelatedWork W2361747435 @default.
- W2020492074 hasRelatedWork W2973052277 @default.
- W2020492074 hasRelatedWork W4226325669 @default.
- W2020492074 hasRelatedWork W4321636153 @default.
- W2020492074 hasRelatedWork W4378905756 @default.
- W2020492074 hasRelatedWork W4200628613 @default.