Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020538533> ?p ?o ?g. }
- W2020538533 endingPage "19" @default.
- W2020538533 startingPage "1" @default.
- W2020538533 abstract "Fuzzy classification systems based on fuzzy logic are capable of dealing with cognitive uncertainties such as vagueness and ambiguity involved in classification problems. To build a fuzzy classification system, the key is to find an optimal set of fuzzy rules. Machine learning methods such as fuzzy neural networks and fuzzy decision tree induction have been applied to learn fuzzy rules but they may be trapped into local optimal. Based on the principle of natural evolution and global searching, a genetic algorithm is promising in obtaining better results but it is usually less efficient. In this paper, a Fuzzy Genetic Algorithm (FGA) is developed to generate fuzzy classification rules. Several techniques such as multi-value logic coding, composite fitness function, viability check, and rule extraction are used to improve the efficiency and the effectiveness of the algorithm. Two experiments are conducted to demonstrate the performance of FGA and to compare FGA with other machine learning algorithms." @default.
- W2020538533 created "2016-06-24" @default.
- W2020538533 creator A5010205655 @default.
- W2020538533 creator A5017107640 @default.
- W2020538533 date "1996-11-01" @default.
- W2020538533 modified "2023-10-18" @default.
- W2020538533 title "A genetic algorithm for generating fuzzy classification rules" @default.
- W2020538533 cites W1479772222 @default.
- W2020538533 cites W1966638011 @default.
- W2020538533 cites W2012612681 @default.
- W2020538533 cites W2015487637 @default.
- W2020538533 cites W2017775278 @default.
- W2020538533 cites W2022183294 @default.
- W2020538533 cites W2038355682 @default.
- W2020538533 cites W2053445538 @default.
- W2020538533 cites W2072865642 @default.
- W2020538533 cites W2080087838 @default.
- W2020538533 cites W2094069079 @default.
- W2020538533 cites W2101927907 @default.
- W2020538533 cites W2103283632 @default.
- W2020538533 cites W2123838489 @default.
- W2020538533 cites W2125283600 @default.
- W2020538533 cites W2145038862 @default.
- W2020538533 cites W2156060469 @default.
- W2020538533 cites W3037058914 @default.
- W2020538533 cites W4206665516 @default.
- W2020538533 cites W4211007335 @default.
- W2020538533 cites W4236137412 @default.
- W2020538533 cites W4239194948 @default.
- W2020538533 doi "https://doi.org/10.1016/0165-0114(95)00302-9" @default.
- W2020538533 hasPublicationYear "1996" @default.
- W2020538533 type Work @default.
- W2020538533 sameAs 2020538533 @default.
- W2020538533 citedByCount "169" @default.
- W2020538533 countsByYear W20205385332012 @default.
- W2020538533 countsByYear W20205385332013 @default.
- W2020538533 countsByYear W20205385332014 @default.
- W2020538533 countsByYear W20205385332015 @default.
- W2020538533 countsByYear W20205385332016 @default.
- W2020538533 countsByYear W20205385332017 @default.
- W2020538533 countsByYear W20205385332018 @default.
- W2020538533 countsByYear W20205385332019 @default.
- W2020538533 countsByYear W20205385332020 @default.
- W2020538533 countsByYear W20205385332021 @default.
- W2020538533 countsByYear W20205385332022 @default.
- W2020538533 countsByYear W20205385332023 @default.
- W2020538533 crossrefType "journal-article" @default.
- W2020538533 hasAuthorship W2020538533A5010205655 @default.
- W2020538533 hasAuthorship W2020538533A5017107640 @default.
- W2020538533 hasConcept C11413529 @default.
- W2020538533 hasConcept C119857082 @default.
- W2020538533 hasConcept C124101348 @default.
- W2020538533 hasConcept C127385683 @default.
- W2020538533 hasConcept C144170203 @default.
- W2020538533 hasConcept C148671577 @default.
- W2020538533 hasConcept C154945302 @default.
- W2020538533 hasConcept C170260401 @default.
- W2020538533 hasConcept C1883856 @default.
- W2020538533 hasConcept C195975749 @default.
- W2020538533 hasConcept C29470771 @default.
- W2020538533 hasConcept C33923547 @default.
- W2020538533 hasConcept C41008148 @default.
- W2020538533 hasConcept C42011625 @default.
- W2020538533 hasConcept C5263885 @default.
- W2020538533 hasConcept C58166 @default.
- W2020538533 hasConceptScore W2020538533C11413529 @default.
- W2020538533 hasConceptScore W2020538533C119857082 @default.
- W2020538533 hasConceptScore W2020538533C124101348 @default.
- W2020538533 hasConceptScore W2020538533C127385683 @default.
- W2020538533 hasConceptScore W2020538533C144170203 @default.
- W2020538533 hasConceptScore W2020538533C148671577 @default.
- W2020538533 hasConceptScore W2020538533C154945302 @default.
- W2020538533 hasConceptScore W2020538533C170260401 @default.
- W2020538533 hasConceptScore W2020538533C1883856 @default.
- W2020538533 hasConceptScore W2020538533C195975749 @default.
- W2020538533 hasConceptScore W2020538533C29470771 @default.
- W2020538533 hasConceptScore W2020538533C33923547 @default.
- W2020538533 hasConceptScore W2020538533C41008148 @default.
- W2020538533 hasConceptScore W2020538533C42011625 @default.
- W2020538533 hasConceptScore W2020538533C5263885 @default.
- W2020538533 hasConceptScore W2020538533C58166 @default.
- W2020538533 hasIssue "1" @default.
- W2020538533 hasLocation W20205385331 @default.
- W2020538533 hasOpenAccess W2020538533 @default.
- W2020538533 hasPrimaryLocation W20205385331 @default.
- W2020538533 hasRelatedWork W1967710160 @default.
- W2020538533 hasRelatedWork W2020136781 @default.
- W2020538533 hasRelatedWork W2061828243 @default.
- W2020538533 hasRelatedWork W2131398822 @default.
- W2020538533 hasRelatedWork W2138045326 @default.
- W2020538533 hasRelatedWork W2139557904 @default.
- W2020538533 hasRelatedWork W2154201233 @default.
- W2020538533 hasRelatedWork W2154887770 @default.
- W2020538533 hasRelatedWork W2365147482 @default.
- W2020538533 hasRelatedWork W947014937 @default.
- W2020538533 hasVolume "84" @default.
- W2020538533 isParatext "false" @default.
- W2020538533 isRetracted "false" @default.