Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020595981> ?p ?o ?g. }
- W2020595981 endingPage "240" @default.
- W2020595981 startingPage "237" @default.
- W2020595981 abstract "The Haldane model, which predicts complex topological states of matter, has been implemented by placing ultracold atoms in a tunable optical lattice that was deformed and shaken. The quantum Hall effect leads to topologically protected edge states, and for a long time was thought to exclusively emerge in the presence of an external magnetic field. But in 1988, Duncan Haldane proposed a model in which this exotic electronics structure arises without this requirement. He proposed that, in a honeycomb lattice with a staggered flux, the necessary ingredients for a quantum Hall effect would be inherent in the material itself. The principles behind this concept were later recruited to design topological insulators, but in its original expression, the Haldane model has not been observed in the laboratory. In this issue of Nature, two groups report on progress connected to the Haldane model. Gregor Jotzu et al. report the first realization of the Haldane model and Pedram Roushan et al. show how it can be precisely measured. Jotzu et al. use ultracold fermions to realize the breaking of time-reversal and inversion symmetry — the two main requirements of the model — by implementing a circular modulation of the lattice position and an energy offset between neighbouring sites. Roushan et al. use superconducting quantum circuits — a Josephson junction sandwiched between superconducting electrodes — to realize a non-interacting form of the Haldane model with a single qubit and an interacting two-qubit model through a new experimental setup called 'gmon' coupling architecture. Their setup allows them to characterize both cases by measuring the Berry curvature, a feature that all topological structures have in common. The Haldane model on a honeycomb lattice is a paradigmatic example of a Hamiltonian featuring topologically distinct phases of matter1. It describes a mechanism through which a quantum Hall effect can appear as an intrinsic property of a band structure, rather than being caused by an external magnetic field2. Although physical implementation has been considered unlikely, the Haldane model has provided the conceptual basis for theoretical and experimental research exploring topological insulators and superconductors2,3,4,5,6. Here we report the experimental realization of the Haldane model and the characterization of its topological band structure, using ultracold fermionic atoms in a periodically modulated optical honeycomb lattice. The Haldane model is based on breaking both time-reversal symmetry and inversion symmetry. To break time-reversal symmetry, we introduce complex next-nearest-neighbour tunnelling terms, which we induce through circular modulation of the lattice position7. To break inversion symmetry, we create an energy offset between neighbouring sites8. Breaking either of these symmetries opens a gap in the band structure, which we probe using momentum-resolved interband transitions. We explore the resulting Berry curvatures, which characterize the topology of the lowest band, by applying a constant force to the atoms and find orthogonal drifts analogous to a Hall current. The competition between the two broken symmetries gives rise to a transition between topologically distinct regimes. By identifying the vanishing gap at a single Dirac point, we map out this transition line experimentally and quantitatively compare it to calculations using Floquet theory without free parameters. We verify that our approach, which allows us to tune the topological properties dynamically, is suitable even for interacting fermionic systems. Furthermore, we propose a direct extension to realize spin-dependent topological Hamiltonians." @default.
- W2020595981 created "2016-06-24" @default.
- W2020595981 creator A5004955802 @default.
- W2020595981 creator A5017511276 @default.
- W2020595981 creator A5020623477 @default.
- W2020595981 creator A5045006640 @default.
- W2020595981 creator A5068334890 @default.
- W2020595981 creator A5071885897 @default.
- W2020595981 creator A5089304065 @default.
- W2020595981 date "2014-11-12" @default.
- W2020595981 modified "2023-10-17" @default.
- W2020595981 title "Experimental realization of the topological Haldane model with ultracold fermions" @default.
- W2020595981 cites W1711729078 @default.
- W2020595981 cites W1905539406 @default.
- W2020595981 cites W1966070481 @default.
- W2020595981 cites W1970188810 @default.
- W2020595981 cites W1978380414 @default.
- W2020595981 cites W1978426240 @default.
- W2020595981 cites W1984834626 @default.
- W2020595981 cites W1984887364 @default.
- W2020595981 cites W1986891238 @default.
- W2020595981 cites W1988242914 @default.
- W2020595981 cites W1994020433 @default.
- W2020595981 cites W2012813559 @default.
- W2020595981 cites W2020581398 @default.
- W2020595981 cites W2030164271 @default.
- W2020595981 cites W2033237631 @default.
- W2020595981 cites W2035024533 @default.
- W2020595981 cites W2037034298 @default.
- W2020595981 cites W2037946213 @default.
- W2020595981 cites W2043175787 @default.
- W2020595981 cites W2053030665 @default.
- W2020595981 cites W2056404648 @default.
- W2020595981 cites W2063327258 @default.
- W2020595981 cites W2064677474 @default.
- W2020595981 cites W2065857896 @default.
- W2020595981 cites W2075346611 @default.
- W2020595981 cites W2085247228 @default.
- W2020595981 cites W2093214152 @default.
- W2020595981 cites W2101893110 @default.
- W2020595981 cites W2102074887 @default.
- W2020595981 cites W2143622822 @default.
- W2020595981 cites W2170455764 @default.
- W2020595981 doi "https://doi.org/10.1038/nature13915" @default.
- W2020595981 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25391960" @default.
- W2020595981 hasPublicationYear "2014" @default.
- W2020595981 type Work @default.
- W2020595981 sameAs 2020595981 @default.
- W2020595981 citedByCount "1649" @default.
- W2020595981 countsByYear W20205959812013 @default.
- W2020595981 countsByYear W20205959812014 @default.
- W2020595981 countsByYear W20205959812015 @default.
- W2020595981 countsByYear W20205959812016 @default.
- W2020595981 countsByYear W20205959812017 @default.
- W2020595981 countsByYear W20205959812018 @default.
- W2020595981 countsByYear W20205959812019 @default.
- W2020595981 countsByYear W20205959812020 @default.
- W2020595981 countsByYear W20205959812021 @default.
- W2020595981 countsByYear W20205959812022 @default.
- W2020595981 countsByYear W20205959812023 @default.
- W2020595981 crossrefType "journal-article" @default.
- W2020595981 hasAuthorship W2020595981A5004955802 @default.
- W2020595981 hasAuthorship W2020595981A5017511276 @default.
- W2020595981 hasAuthorship W2020595981A5020623477 @default.
- W2020595981 hasAuthorship W2020595981A5045006640 @default.
- W2020595981 hasAuthorship W2020595981A5068334890 @default.
- W2020595981 hasAuthorship W2020595981A5071885897 @default.
- W2020595981 hasAuthorship W2020595981A5089304065 @default.
- W2020595981 hasBestOaLocation W20205959812 @default.
- W2020595981 hasConcept C111776688 @default.
- W2020595981 hasConcept C115260700 @default.
- W2020595981 hasConcept C119599485 @default.
- W2020595981 hasConcept C121332964 @default.
- W2020595981 hasConcept C127413603 @default.
- W2020595981 hasConcept C184720557 @default.
- W2020595981 hasConcept C200369452 @default.
- W2020595981 hasConcept C203087015 @default.
- W2020595981 hasConcept C24890656 @default.
- W2020595981 hasConcept C26873012 @default.
- W2020595981 hasConcept C2777205815 @default.
- W2020595981 hasConcept C2781204021 @default.
- W2020595981 hasConcept C33332235 @default.
- W2020595981 hasConcept C52233224 @default.
- W2020595981 hasConcept C54101563 @default.
- W2020595981 hasConcept C62520636 @default.
- W2020595981 hasConcept C84114770 @default.
- W2020595981 hasConceptScore W2020595981C111776688 @default.
- W2020595981 hasConceptScore W2020595981C115260700 @default.
- W2020595981 hasConceptScore W2020595981C119599485 @default.
- W2020595981 hasConceptScore W2020595981C121332964 @default.
- W2020595981 hasConceptScore W2020595981C127413603 @default.
- W2020595981 hasConceptScore W2020595981C184720557 @default.
- W2020595981 hasConceptScore W2020595981C200369452 @default.
- W2020595981 hasConceptScore W2020595981C203087015 @default.
- W2020595981 hasConceptScore W2020595981C24890656 @default.
- W2020595981 hasConceptScore W2020595981C26873012 @default.
- W2020595981 hasConceptScore W2020595981C2777205815 @default.
- W2020595981 hasConceptScore W2020595981C2781204021 @default.