Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020602167> ?p ?o ?g. }
- W2020602167 endingPage "236" @default.
- W2020602167 startingPage "226" @default.
- W2020602167 abstract "Abstract Clustering methods are one of the most popular approaches to data mining. They have been successfully used in virtually any field covering domains such as economics, marketing, bioinformatics, engineering, and many others. The classic cluster algorithms require static data structures. However, there is an increasing need to address changing data patterns. On the one hand, this need is generated by the rapidly growing amount of data that is collected by modern information systems and that has led to an increasing interest in data mining as its whole again. On the other hand, modern economies and markets do not deal with stable settings any longer but are facing the challenge to adapt to constantly changing environments. These include seasonal changes but also long‐term trends that structurally change whole economies, wipe out companies that cannot adapt to these trends, and create opportunities for entrepreneurs who establish large multinational corporations virtually out of nothing in just one decade or two. Hence, it is essential for almost any organization to address these changes. Obviously, players that have information on changes first possibly obtain a strategic advantage over their competitors. This has motivated an increasing number of researchers to enrich and extend classic static clustering algorithms by dynamic derivatives . In the past decades, very promising approaches have been suggested; some selected ones will be introduced in this review. © 2012 Wiley Periodicals, Inc. This article is categorized under: Algorithmic Development > Spatial and Temporal Data Mining Algorithmic Development > Structure Discovery Technologies > Computational Intelligence Technologies > Structure Discovery and Clustering" @default.
- W2020602167 created "2016-06-24" @default.
- W2020602167 creator A5056123255 @default.
- W2020602167 creator A5085037027 @default.
- W2020602167 date "2012-03-14" @default.
- W2020602167 modified "2023-10-16" @default.
- W2020602167 title "Dynamic clustering with soft computing" @default.
- W2020602167 cites W1495305101 @default.
- W2020602167 cites W1566759943 @default.
- W2020602167 cites W1597744577 @default.
- W2020602167 cites W1827315716 @default.
- W2020602167 cites W1972184715 @default.
- W2020602167 cites W1975987771 @default.
- W2020602167 cites W1987149779 @default.
- W2020602167 cites W1987251161 @default.
- W2020602167 cites W1987865517 @default.
- W2020602167 cites W1992419399 @default.
- W2020602167 cites W2001009159 @default.
- W2020602167 cites W2001594935 @default.
- W2020602167 cites W2007516075 @default.
- W2020602167 cites W2019496850 @default.
- W2020602167 cites W2027654459 @default.
- W2020602167 cites W2034171445 @default.
- W2020602167 cites W2040197058 @default.
- W2020602167 cites W2041264458 @default.
- W2020602167 cites W2048404808 @default.
- W2020602167 cites W2068203989 @default.
- W2020602167 cites W2076534030 @default.
- W2020602167 cites W2076556084 @default.
- W2020602167 cites W2081770587 @default.
- W2020602167 cites W2085645322 @default.
- W2020602167 cites W2087115982 @default.
- W2020602167 cites W2096768134 @default.
- W2020602167 cites W2101412222 @default.
- W2020602167 cites W2104103177 @default.
- W2020602167 cites W2112655379 @default.
- W2020602167 cites W2113076747 @default.
- W2020602167 cites W2120688485 @default.
- W2020602167 cites W2125205396 @default.
- W2020602167 cites W2129987652 @default.
- W2020602167 cites W2166429245 @default.
- W2020602167 cites W2250136874 @default.
- W2020602167 cites W2313794237 @default.
- W2020602167 cites W2489377986 @default.
- W2020602167 cites W2587577642 @default.
- W2020602167 cites W2798919688 @default.
- W2020602167 cites W4211007335 @default.
- W2020602167 cites W4230588984 @default.
- W2020602167 cites W4234482552 @default.
- W2020602167 cites W4239048948 @default.
- W2020602167 cites W4255833381 @default.
- W2020602167 doi "https://doi.org/10.1002/widm.1050" @default.
- W2020602167 hasPublicationYear "2012" @default.
- W2020602167 type Work @default.
- W2020602167 sameAs 2020602167 @default.
- W2020602167 citedByCount "9" @default.
- W2020602167 countsByYear W20206021672012 @default.
- W2020602167 countsByYear W20206021672013 @default.
- W2020602167 countsByYear W20206021672014 @default.
- W2020602167 countsByYear W20206021672016 @default.
- W2020602167 countsByYear W20206021672017 @default.
- W2020602167 countsByYear W20206021672018 @default.
- W2020602167 countsByYear W20206021672019 @default.
- W2020602167 countsByYear W20206021672022 @default.
- W2020602167 crossrefType "journal-article" @default.
- W2020602167 hasAuthorship W2020602167A5056123255 @default.
- W2020602167 hasAuthorship W2020602167A5085037027 @default.
- W2020602167 hasConcept C10138342 @default.
- W2020602167 hasConcept C124101348 @default.
- W2020602167 hasConcept C127576917 @default.
- W2020602167 hasConcept C144133560 @default.
- W2020602167 hasConcept C154945302 @default.
- W2020602167 hasConcept C158016649 @default.
- W2020602167 hasConcept C162853370 @default.
- W2020602167 hasConcept C202444582 @default.
- W2020602167 hasConcept C2522767166 @default.
- W2020602167 hasConcept C33923547 @default.
- W2020602167 hasConcept C41008148 @default.
- W2020602167 hasConcept C73555534 @default.
- W2020602167 hasConcept C75684735 @default.
- W2020602167 hasConcept C9652623 @default.
- W2020602167 hasConceptScore W2020602167C10138342 @default.
- W2020602167 hasConceptScore W2020602167C124101348 @default.
- W2020602167 hasConceptScore W2020602167C127576917 @default.
- W2020602167 hasConceptScore W2020602167C144133560 @default.
- W2020602167 hasConceptScore W2020602167C154945302 @default.
- W2020602167 hasConceptScore W2020602167C158016649 @default.
- W2020602167 hasConceptScore W2020602167C162853370 @default.
- W2020602167 hasConceptScore W2020602167C202444582 @default.
- W2020602167 hasConceptScore W2020602167C2522767166 @default.
- W2020602167 hasConceptScore W2020602167C33923547 @default.
- W2020602167 hasConceptScore W2020602167C41008148 @default.
- W2020602167 hasConceptScore W2020602167C73555534 @default.
- W2020602167 hasConceptScore W2020602167C75684735 @default.
- W2020602167 hasConceptScore W2020602167C9652623 @default.
- W2020602167 hasIssue "3" @default.
- W2020602167 hasLocation W20206021671 @default.
- W2020602167 hasOpenAccess W2020602167 @default.