Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020624748> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2020624748 abstract "In several recent papers we demonstrated that classical single-sensor, single-source statistics can be directly extended to the multisensor, multisource case. The basis for this generalization is the finite random set, together with a set of direct parallels between random-set and random- vector theories which allow familiar statistical techniques to be directly transferred to data fusion problems. We previously showed that parametric point estimation theory can be thus generalized, resulting in fully integrated data fusion algorithms. However, parametric estimation is not appropriate when sensor noise distributions are poorly known. Also, since most data fusion algorithms are partially ad hoc constructions it is difficult to determine the overall statistical behavior of such algorithms even if the statistics of the sensors are well understood. This paper shows how a standard nonparametric estimation technique, the projection kernel approach to estimating unknown probability distributions, can be extended directly to the data fusion realm." @default.
- W2020624748 created "2016-06-24" @default.
- W2020624748 creator A5006022796 @default.
- W2020624748 date "1995-07-05" @default.
- W2020624748 modified "2023-09-23" @default.
- W2020624748 title "<title>Unified nonparametric data fusion</title>" @default.
- W2020624748 doi "https://doi.org/10.1117/12.213008" @default.
- W2020624748 hasPublicationYear "1995" @default.
- W2020624748 type Work @default.
- W2020624748 sameAs 2020624748 @default.
- W2020624748 citedByCount "5" @default.
- W2020624748 crossrefType "proceedings-article" @default.
- W2020624748 hasAuthorship W2020624748A5006022796 @default.
- W2020624748 hasConcept C102366305 @default.
- W2020624748 hasConcept C105795698 @default.
- W2020624748 hasConcept C11413529 @default.
- W2020624748 hasConcept C117251300 @default.
- W2020624748 hasConcept C118615104 @default.
- W2020624748 hasConcept C134306372 @default.
- W2020624748 hasConcept C153180895 @default.
- W2020624748 hasConcept C154945302 @default.
- W2020624748 hasConcept C177148314 @default.
- W2020624748 hasConcept C177264268 @default.
- W2020624748 hasConcept C199360897 @default.
- W2020624748 hasConcept C2777036070 @default.
- W2020624748 hasConcept C33923547 @default.
- W2020624748 hasConcept C33954974 @default.
- W2020624748 hasConcept C41008148 @default.
- W2020624748 hasConcept C74193536 @default.
- W2020624748 hasConceptScore W2020624748C102366305 @default.
- W2020624748 hasConceptScore W2020624748C105795698 @default.
- W2020624748 hasConceptScore W2020624748C11413529 @default.
- W2020624748 hasConceptScore W2020624748C117251300 @default.
- W2020624748 hasConceptScore W2020624748C118615104 @default.
- W2020624748 hasConceptScore W2020624748C134306372 @default.
- W2020624748 hasConceptScore W2020624748C153180895 @default.
- W2020624748 hasConceptScore W2020624748C154945302 @default.
- W2020624748 hasConceptScore W2020624748C177148314 @default.
- W2020624748 hasConceptScore W2020624748C177264268 @default.
- W2020624748 hasConceptScore W2020624748C199360897 @default.
- W2020624748 hasConceptScore W2020624748C2777036070 @default.
- W2020624748 hasConceptScore W2020624748C33923547 @default.
- W2020624748 hasConceptScore W2020624748C33954974 @default.
- W2020624748 hasConceptScore W2020624748C41008148 @default.
- W2020624748 hasConceptScore W2020624748C74193536 @default.
- W2020624748 hasLocation W20206247481 @default.
- W2020624748 hasOpenAccess W2020624748 @default.
- W2020624748 hasPrimaryLocation W20206247481 @default.
- W2020624748 hasRelatedWork W1591203121 @default.
- W2020624748 hasRelatedWork W1967272741 @default.
- W2020624748 hasRelatedWork W2076520961 @default.
- W2020624748 hasRelatedWork W2103444992 @default.
- W2020624748 hasRelatedWork W2110459882 @default.
- W2020624748 hasRelatedWork W2118043379 @default.
- W2020624748 hasRelatedWork W2141018987 @default.
- W2020624748 hasRelatedWork W2151022383 @default.
- W2020624748 hasRelatedWork W2603933437 @default.
- W2020624748 hasRelatedWork W2949120947 @default.
- W2020624748 isParatext "false" @default.
- W2020624748 isRetracted "false" @default.
- W2020624748 magId "2020624748" @default.
- W2020624748 workType "article" @default.