Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020638772> ?p ?o ?g. }
- W2020638772 endingPage "1487" @default.
- W2020638772 startingPage "1476" @default.
- W2020638772 abstract "In this study, we developed cationic microemulsions containing a protein transduction domain (penetratin) for optimizing paclitaxel localization within the skin. Microemulsions were prepared by mixing a surfactant blend (BRIJ:ethanol:propylene glycol 2:1:1, w/w/w) with monocaprylin (oil phase) at 1.3:1 ratio, and adding water at 30% (ME-30), 43% (ME-43), and 50% (ME-50). Electrical conductivity and viscosity measurements indicated that ME-30 is most likely a bicontinuous system, whereas ME-43 and ME-50 are water continuous. Their irritation potential, studied in bioengineered skin equivalents, decreased as aqueous content increased. Because ME-50 was not stable in the presence of paclitaxel (0.5%), ME-43 was selected for penetratin incorporation (0.4%). The microemulsion containing penetratin (ME-P) displayed zeta potential of +5.2 mV, and promoted a 1.8-fold increase in paclitaxel cutaneous (but not transdermal) delivery compared with the plain ME-43, whereas the enhancement promoted by another cationic microemulsion containing phytosphingosine was 1.3-fold. Compared with myvacet oil, ME-P promoted a larger increase on transepidermal water loss (twofold) than the plain or the phytosphingosine-containing microemulsions (1.5-fold), suggesting that penetratin addition increases the barrier-disrupting and penetration-enhancing effects of microemulsions. The ratio Δcutaneous/Δtransdermal delivery promoted by ME-P was the highest among the formulations, suggesting its potential for drug localization within cutaneous tumor lesions. In this study, we developed cationic microemulsions containing a protein transduction domain (penetratin) for optimizing paclitaxel localization within the skin. Microemulsions were prepared by mixing a surfactant blend (BRIJ:ethanol:propylene glycol 2:1:1, w/w/w) with monocaprylin (oil phase) at 1.3:1 ratio, and adding water at 30% (ME-30), 43% (ME-43), and 50% (ME-50). Electrical conductivity and viscosity measurements indicated that ME-30 is most likely a bicontinuous system, whereas ME-43 and ME-50 are water continuous. Their irritation potential, studied in bioengineered skin equivalents, decreased as aqueous content increased. Because ME-50 was not stable in the presence of paclitaxel (0.5%), ME-43 was selected for penetratin incorporation (0.4%). The microemulsion containing penetratin (ME-P) displayed zeta potential of +5.2 mV, and promoted a 1.8-fold increase in paclitaxel cutaneous (but not transdermal) delivery compared with the plain ME-43, whereas the enhancement promoted by another cationic microemulsion containing phytosphingosine was 1.3-fold. Compared with myvacet oil, ME-P promoted a larger increase on transepidermal water loss (twofold) than the plain or the phytosphingosine-containing microemulsions (1.5-fold), suggesting that penetratin addition increases the barrier-disrupting and penetration-enhancing effects of microemulsions. The ratio Δcutaneous/Δtransdermal delivery promoted by ME-P was the highest among the formulations, suggesting its potential for drug localization within cutaneous tumor lesions." @default.
- W2020638772 created "2016-06-24" @default.
- W2020638772 creator A5049780582 @default.
- W2020638772 creator A5083419878 @default.
- W2020638772 creator A5086885696 @default.
- W2020638772 creator A5000340031 @default.
- W2020638772 date "2013-05-01" @default.
- W2020638772 modified "2023-10-10" @default.
- W2020638772 title "Protein Transduction Domain-Containing Microemulsions as Cutaneous Delivery Systems for an Anticancer Agent" @default.
- W2020638772 cites W1590085201 @default.
- W2020638772 cites W1967017848 @default.
- W2020638772 cites W1967117653 @default.
- W2020638772 cites W1968639268 @default.
- W2020638772 cites W1968876402 @default.
- W2020638772 cites W1972549320 @default.
- W2020638772 cites W1975532235 @default.
- W2020638772 cites W1978291661 @default.
- W2020638772 cites W1980479230 @default.
- W2020638772 cites W1983443135 @default.
- W2020638772 cites W1983727696 @default.
- W2020638772 cites W1984061623 @default.
- W2020638772 cites W1987564805 @default.
- W2020638772 cites W1988335479 @default.
- W2020638772 cites W1991719821 @default.
- W2020638772 cites W1996081402 @default.
- W2020638772 cites W2001182685 @default.
- W2020638772 cites W2006434892 @default.
- W2020638772 cites W2006828118 @default.
- W2020638772 cites W2006853901 @default.
- W2020638772 cites W2007836674 @default.
- W2020638772 cites W2009187208 @default.
- W2020638772 cites W2009620631 @default.
- W2020638772 cites W2013041059 @default.
- W2020638772 cites W2016955174 @default.
- W2020638772 cites W2020959058 @default.
- W2020638772 cites W2022244556 @default.
- W2020638772 cites W2024111541 @default.
- W2020638772 cites W2027680894 @default.
- W2020638772 cites W2030182281 @default.
- W2020638772 cites W2032879526 @default.
- W2020638772 cites W2034496890 @default.
- W2020638772 cites W2038039411 @default.
- W2020638772 cites W2039911089 @default.
- W2020638772 cites W2043984175 @default.
- W2020638772 cites W2045830660 @default.
- W2020638772 cites W2046508973 @default.
- W2020638772 cites W2049297645 @default.
- W2020638772 cites W2051425346 @default.
- W2020638772 cites W2055471399 @default.
- W2020638772 cites W2055736665 @default.
- W2020638772 cites W2056851027 @default.
- W2020638772 cites W2059354422 @default.
- W2020638772 cites W2061659009 @default.
- W2020638772 cites W2063108311 @default.
- W2020638772 cites W2067885030 @default.
- W2020638772 cites W2076515838 @default.
- W2020638772 cites W2077690800 @default.
- W2020638772 cites W2081676751 @default.
- W2020638772 cites W2084587351 @default.
- W2020638772 cites W2084753460 @default.
- W2020638772 cites W2085016640 @default.
- W2020638772 cites W2085162634 @default.
- W2020638772 cites W2086614286 @default.
- W2020638772 cites W2090772217 @default.
- W2020638772 cites W2094046366 @default.
- W2020638772 cites W2099029222 @default.
- W2020638772 cites W2100520064 @default.
- W2020638772 cites W2122866830 @default.
- W2020638772 cites W2128294490 @default.
- W2020638772 cites W2135727032 @default.
- W2020638772 cites W2138619479 @default.
- W2020638772 cites W2171158457 @default.
- W2020638772 cites W4237121156 @default.
- W2020638772 doi "https://doi.org/10.1002/jps.23482" @default.
- W2020638772 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23436680" @default.
- W2020638772 hasPublicationYear "2013" @default.
- W2020638772 type Work @default.
- W2020638772 sameAs 2020638772 @default.
- W2020638772 citedByCount "35" @default.
- W2020638772 countsByYear W20206387722014 @default.
- W2020638772 countsByYear W20206387722015 @default.
- W2020638772 countsByYear W20206387722016 @default.
- W2020638772 countsByYear W20206387722017 @default.
- W2020638772 countsByYear W20206387722018 @default.
- W2020638772 countsByYear W20206387722019 @default.
- W2020638772 countsByYear W20206387722020 @default.
- W2020638772 countsByYear W20206387722021 @default.
- W2020638772 countsByYear W20206387722022 @default.
- W2020638772 countsByYear W20206387722023 @default.
- W2020638772 crossrefType "journal-article" @default.
- W2020638772 hasAuthorship W2020638772A5000340031 @default.
- W2020638772 hasAuthorship W2020638772A5049780582 @default.
- W2020638772 hasAuthorship W2020638772A5083419878 @default.
- W2020638772 hasAuthorship W2020638772A5086885696 @default.
- W2020638772 hasConcept C13965031 @default.
- W2020638772 hasConcept C141071460 @default.
- W2020638772 hasConcept C155672457 @default.
- W2020638772 hasConcept C171250308 @default.