Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020640689> ?p ?o ?g. }
- W2020640689 endingPage "148" @default.
- W2020640689 startingPage "136" @default.
- W2020640689 abstract "One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film ‘At Land’ by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved a feasible method for ordering the ICs based on their functional relevance to the annotated cinematic features. The novelty of our method is – in comparison to the hypothesis-driven manual pre-selection and observation of some individual regressors biased by choice – in applying data-driven approach to all content features simultaneously. We found especially the combination of regularized regression and ICA useful when analyzing fMRI data obtained using non-narrative movie stimulus with a large set of complex and correlated features." @default.
- W2020640689 created "2016-06-24" @default.
- W2020640689 creator A5036912183 @default.
- W2020640689 creator A5073858428 @default.
- W2020640689 creator A5076523568 @default.
- W2020640689 date "2015-04-01" @default.
- W2020640689 modified "2023-10-06" @default.
- W2020640689 title "Optimizing methods for linking cinematic features to fMRI data" @default.
- W2020640689 cites W1596614913 @default.
- W2020640689 cites W1862276899 @default.
- W2020640689 cites W1967542346 @default.
- W2020640689 cites W1971600338 @default.
- W2020640689 cites W1973741448 @default.
- W2020640689 cites W1973776237 @default.
- W2020640689 cites W1976251851 @default.
- W2020640689 cites W1976657599 @default.
- W2020640689 cites W1985327120 @default.
- W2020640689 cites W1986589478 @default.
- W2020640689 cites W1994809810 @default.
- W2020640689 cites W1998025025 @default.
- W2020640689 cites W2001141328 @default.
- W2020640689 cites W2007997142 @default.
- W2020640689 cites W2008193883 @default.
- W2020640689 cites W2010408890 @default.
- W2020640689 cites W2011589116 @default.
- W2020640689 cites W2015890204 @default.
- W2020640689 cites W2016444985 @default.
- W2020640689 cites W2023117111 @default.
- W2020640689 cites W2035148124 @default.
- W2020640689 cites W2041050058 @default.
- W2020640689 cites W2052597048 @default.
- W2020640689 cites W2064412117 @default.
- W2020640689 cites W2073503722 @default.
- W2020640689 cites W2079450984 @default.
- W2020640689 cites W2084475173 @default.
- W2020640689 cites W2086426700 @default.
- W2020640689 cites W2087530658 @default.
- W2020640689 cites W2090664364 @default.
- W2020640689 cites W2095872964 @default.
- W2020640689 cites W2098950991 @default.
- W2020640689 cites W2102717406 @default.
- W2020640689 cites W2102771918 @default.
- W2020640689 cites W2109623376 @default.
- W2020640689 cites W2112180451 @default.
- W2020640689 cites W2115631892 @default.
- W2020640689 cites W2115632542 @default.
- W2020640689 cites W2119117056 @default.
- W2020640689 cites W2119624823 @default.
- W2020640689 cites W2119862467 @default.
- W2020640689 cites W2122825543 @default.
- W2020640689 cites W2126810579 @default.
- W2020640689 cites W2135192628 @default.
- W2020640689 cites W2136132248 @default.
- W2020640689 cites W2140964565 @default.
- W2020640689 cites W2142111809 @default.
- W2020640689 cites W2145862943 @default.
- W2020640689 cites W2152476676 @default.
- W2020640689 cites W2154930578 @default.
- W2020640689 cites W2161976355 @default.
- W2020640689 cites W2166959524 @default.
- W2020640689 cites W2168217710 @default.
- W2020640689 cites W2168620332 @default.
- W2020640689 cites W2169756771 @default.
- W2020640689 cites W2172168442 @default.
- W2020640689 cites W22873392 @default.
- W2020640689 cites W2977883299 @default.
- W2020640689 cites W3104887532 @default.
- W2020640689 doi "https://doi.org/10.1016/j.neuroimage.2015.01.063" @default.
- W2020640689 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25662868" @default.
- W2020640689 hasPublicationYear "2015" @default.
- W2020640689 type Work @default.
- W2020640689 sameAs 2020640689 @default.
- W2020640689 citedByCount "28" @default.
- W2020640689 countsByYear W20206406892015 @default.
- W2020640689 countsByYear W20206406892016 @default.
- W2020640689 countsByYear W20206406892017 @default.
- W2020640689 countsByYear W20206406892018 @default.
- W2020640689 countsByYear W20206406892019 @default.
- W2020640689 countsByYear W20206406892020 @default.
- W2020640689 countsByYear W20206406892021 @default.
- W2020640689 countsByYear W20206406892022 @default.
- W2020640689 countsByYear W20206406892023 @default.
- W2020640689 crossrefType "journal-article" @default.
- W2020640689 hasAuthorship W2020640689A5036912183 @default.
- W2020640689 hasAuthorship W2020640689A5073858428 @default.
- W2020640689 hasAuthorship W2020640689A5076523568 @default.
- W2020640689 hasBestOaLocation W20206406891 @default.
- W2020640689 hasConcept C105795698 @default.
- W2020640689 hasConcept C120068334 @default.
- W2020640689 hasConcept C152877465 @default.
- W2020640689 hasConcept C153180895 @default.
- W2020640689 hasConcept C153874254 @default.
- W2020640689 hasConcept C154945302 @default.
- W2020640689 hasConcept C163175372 @default.
- W2020640689 hasConcept C22354355 @default.
- W2020640689 hasConcept C33923547 @default.
- W2020640689 hasConcept C41008148 @default.
- W2020640689 hasConcept C48921125 @default.