Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020641504> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2020641504 endingPage "881" @default.
- W2020641504 startingPage "873" @default.
- W2020641504 abstract "In this paper we consider the interaction of particles with turbulent plasma waves propagating perpendicular to the ordered magnetic field. Our investigation of the dispersion relation for waves propagating at an arbitrary angle θ with respect to the magnetic field lines indicates that the qualitative behavior of the acceleration characteristics at all angles θ≠0 are similar to that of the θ=π/2 case. We use the perpendicular case as a representative example because it leads to a much simpler analysis. Therefore, the results presented here and the results of our earlier papers dealing with the θ=0 case will give a somewhat complete picture of stochastic acceleration for all waves. Unlike the θ=0 case, where only the fundamental mode of each wave contributes, for general value of θ, and in particular for the perpendicular case, many harmonics enter into the equation, making the analysis more complicated. We develop a recipe for evaluation of the contributions of all harmonics and derive an analytic expression for the asymptotic behavior at nonrelativistic energies. We use the formalism of our previous papers and find that all Fokker-Planck coefficients for the perpendicular waves are of the same order of magnitude, so the ratio of the pitch angle to momentum (or energy) diffusion rates is of order unity at all energies and pitch angles. This is unlike the parallel case, where this ratio varies from being much less than 1 at low energies to much greater than 1 at relativistic energies. As a result, the simplifications of the transport equation arising from these inequalities are no longer applicable. On the other hand, we find that when the transport equation for the θ=π/2 case is expressed in terms of diffusion in the parallel and perpendicular components of the momentum, only diffusion in the perpendicular component is present. This again yields a one-dimensional diffusion equation and implies that the parallel momentum does not change. Consequently, we expect a rapid anisotropization of the pitch angle distribution (into a pancake-like distribution) for particles accelerated by perpendicular waves. From comparison of the acceleration rate of the thermal particles with the decay rate of the waves in hot plasmas, we find that a substantial fraction of the background plasma electrons can be accelerated through this process for reasonable values of the energy density and spectrum of turbulence." @default.
- W2020641504 created "2016-06-24" @default.
- W2020641504 creator A5055867902 @default.
- W2020641504 creator A5071359069 @default.
- W2020641504 date "1999-04-20" @default.
- W2020641504 modified "2023-10-16" @default.
- W2020641504 title "Stochastic Acceleration of Electrons by Plasma Waves. III. Waves Propagating Perpendicular to the Magnetic Field" @default.
- W2020641504 cites W1646047917 @default.
- W2020641504 cites W1966878267 @default.
- W2020641504 cites W1967834343 @default.
- W2020641504 cites W1974332423 @default.
- W2020641504 cites W1977998926 @default.
- W2020641504 cites W1979592689 @default.
- W2020641504 cites W1980468288 @default.
- W2020641504 cites W1981309719 @default.
- W2020641504 cites W2003157096 @default.
- W2020641504 cites W2006391648 @default.
- W2020641504 cites W2015563605 @default.
- W2020641504 cites W2028289129 @default.
- W2020641504 cites W2030794404 @default.
- W2020641504 cites W2035368752 @default.
- W2020641504 cites W2037080276 @default.
- W2020641504 cites W2037606656 @default.
- W2020641504 cites W2044695671 @default.
- W2020641504 cites W2053418895 @default.
- W2020641504 cites W2064180671 @default.
- W2020641504 cites W2095008170 @default.
- W2020641504 cites W2154712945 @default.
- W2020641504 cites W3102633936 @default.
- W2020641504 cites W4230007600 @default.
- W2020641504 cites W4254272505 @default.
- W2020641504 doi "https://doi.org/10.1086/307056" @default.
- W2020641504 hasPublicationYear "1999" @default.
- W2020641504 type Work @default.
- W2020641504 sameAs 2020641504 @default.
- W2020641504 citedByCount "25" @default.
- W2020641504 countsByYear W20206415042012 @default.
- W2020641504 countsByYear W20206415042013 @default.
- W2020641504 countsByYear W20206415042016 @default.
- W2020641504 countsByYear W20206415042018 @default.
- W2020641504 countsByYear W20206415042021 @default.
- W2020641504 countsByYear W20206415042022 @default.
- W2020641504 countsByYear W20206415042023 @default.
- W2020641504 crossrefType "journal-article" @default.
- W2020641504 hasAuthorship W2020641504A5055867902 @default.
- W2020641504 hasAuthorship W2020641504A5071359069 @default.
- W2020641504 hasBestOaLocation W20206415041 @default.
- W2020641504 hasConcept C115260700 @default.
- W2020641504 hasConcept C121332964 @default.
- W2020641504 hasConcept C147120987 @default.
- W2020641504 hasConcept C165801399 @default.
- W2020641504 hasConcept C188414643 @default.
- W2020641504 hasConcept C199631012 @default.
- W2020641504 hasConcept C202579712 @default.
- W2020641504 hasConcept C2524010 @default.
- W2020641504 hasConcept C30475298 @default.
- W2020641504 hasConcept C3079626 @default.
- W2020641504 hasConcept C33923547 @default.
- W2020641504 hasConcept C62520636 @default.
- W2020641504 hasConcept C74650414 @default.
- W2020641504 hasConceptScore W2020641504C115260700 @default.
- W2020641504 hasConceptScore W2020641504C121332964 @default.
- W2020641504 hasConceptScore W2020641504C147120987 @default.
- W2020641504 hasConceptScore W2020641504C165801399 @default.
- W2020641504 hasConceptScore W2020641504C188414643 @default.
- W2020641504 hasConceptScore W2020641504C199631012 @default.
- W2020641504 hasConceptScore W2020641504C202579712 @default.
- W2020641504 hasConceptScore W2020641504C2524010 @default.
- W2020641504 hasConceptScore W2020641504C30475298 @default.
- W2020641504 hasConceptScore W2020641504C3079626 @default.
- W2020641504 hasConceptScore W2020641504C33923547 @default.
- W2020641504 hasConceptScore W2020641504C62520636 @default.
- W2020641504 hasConceptScore W2020641504C74650414 @default.
- W2020641504 hasIssue "2" @default.
- W2020641504 hasLocation W20206415041 @default.
- W2020641504 hasOpenAccess W2020641504 @default.
- W2020641504 hasPrimaryLocation W20206415041 @default.
- W2020641504 hasRelatedWork W1990391662 @default.
- W2020641504 hasRelatedWork W2040594467 @default.
- W2020641504 hasRelatedWork W2042205699 @default.
- W2020641504 hasRelatedWork W2049583716 @default.
- W2020641504 hasRelatedWork W2061074178 @default.
- W2020641504 hasRelatedWork W2075715660 @default.
- W2020641504 hasRelatedWork W2093894459 @default.
- W2020641504 hasRelatedWork W2614158469 @default.
- W2020641504 hasRelatedWork W3209739274 @default.
- W2020641504 hasRelatedWork W3111386854 @default.
- W2020641504 hasVolume "515" @default.
- W2020641504 isParatext "false" @default.
- W2020641504 isRetracted "false" @default.
- W2020641504 magId "2020641504" @default.
- W2020641504 workType "article" @default.