Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020642148> ?p ?o ?g. }
- W2020642148 endingPage "687" @default.
- W2020642148 startingPage "675" @default.
- W2020642148 abstract "In this paper we describe a method for the automatic self-calibration of a 3D laser sensor. We wish to acquire crisp point clouds and so we adopt a measure of crispness to capture point cloud quality. We then pose the calibration problem as the task of maximizing point cloud quality. Concretely, we use Rényi Quadratic Entropy to measure the degree of organization of a point cloud. By expressing this quantity as a function of key unknown system parameters, we are able to deduce a full calibration of the sensor via an online optimization. Beyond details on the sensor design itself, we fully describe the end-to-end intrinsic parameter calibration process and the estimation of the clock skews between the constituent microprocessors. We analyse performance using real and simulated data and demonstrate robust performance over 30 test sites." @default.
- W2020642148 created "2016-06-24" @default.
- W2020642148 creator A5023069234 @default.
- W2020642148 creator A5024996163 @default.
- W2020642148 creator A5055299977 @default.
- W2020642148 date "2011-12-21" @default.
- W2020642148 modified "2023-09-26" @default.
- W2020642148 title "Self-calibration for a 3D laser" @default.
- W2020642148 cites W1504310440 @default.
- W2020642148 cites W1555858124 @default.
- W2020642148 cites W1573751879 @default.
- W2020642148 cites W1989760884 @default.
- W2020642148 cites W1995875735 @default.
- W2020642148 cites W2014001040 @default.
- W2020642148 cites W2024045435 @default.
- W2020642148 cites W2024668293 @default.
- W2020642148 cites W2065899349 @default.
- W2020642148 cites W2090579164 @default.
- W2020642148 cites W2096020743 @default.
- W2020642148 cites W2099576286 @default.
- W2020642148 cites W2115276322 @default.
- W2020642148 cites W2116407656 @default.
- W2020642148 cites W2118020555 @default.
- W2020642148 cites W21187803 @default.
- W2020642148 cites W2122248324 @default.
- W2020642148 cites W2129921936 @default.
- W2020642148 cites W2131704252 @default.
- W2020642148 cites W2132727159 @default.
- W2020642148 cites W2155169398 @default.
- W2020642148 cites W2157270587 @default.
- W2020642148 cites W2293145668 @default.
- W2020642148 cites W2636113756 @default.
- W2020642148 doi "https://doi.org/10.1177/0278364911429475" @default.
- W2020642148 hasPublicationYear "2011" @default.
- W2020642148 type Work @default.
- W2020642148 sameAs 2020642148 @default.
- W2020642148 citedByCount "71" @default.
- W2020642148 countsByYear W20206421482012 @default.
- W2020642148 countsByYear W20206421482013 @default.
- W2020642148 countsByYear W20206421482014 @default.
- W2020642148 countsByYear W20206421482015 @default.
- W2020642148 countsByYear W20206421482016 @default.
- W2020642148 countsByYear W20206421482017 @default.
- W2020642148 countsByYear W20206421482018 @default.
- W2020642148 countsByYear W20206421482019 @default.
- W2020642148 countsByYear W20206421482020 @default.
- W2020642148 countsByYear W20206421482021 @default.
- W2020642148 countsByYear W20206421482022 @default.
- W2020642148 countsByYear W20206421482023 @default.
- W2020642148 crossrefType "journal-article" @default.
- W2020642148 hasAuthorship W2020642148A5023069234 @default.
- W2020642148 hasAuthorship W2020642148A5024996163 @default.
- W2020642148 hasAuthorship W2020642148A5055299977 @default.
- W2020642148 hasConcept C105795698 @default.
- W2020642148 hasConcept C106301342 @default.
- W2020642148 hasConcept C111919701 @default.
- W2020642148 hasConcept C11413529 @default.
- W2020642148 hasConcept C121332964 @default.
- W2020642148 hasConcept C124101348 @default.
- W2020642148 hasConcept C129844170 @default.
- W2020642148 hasConcept C131979681 @default.
- W2020642148 hasConcept C154945302 @default.
- W2020642148 hasConcept C165838908 @default.
- W2020642148 hasConcept C2524010 @default.
- W2020642148 hasConcept C26517878 @default.
- W2020642148 hasConcept C2780009758 @default.
- W2020642148 hasConcept C28719098 @default.
- W2020642148 hasConcept C31972630 @default.
- W2020642148 hasConcept C33923547 @default.
- W2020642148 hasConcept C38652104 @default.
- W2020642148 hasConcept C41008148 @default.
- W2020642148 hasConcept C62520636 @default.
- W2020642148 hasConcept C79974875 @default.
- W2020642148 hasConcept C98045186 @default.
- W2020642148 hasConceptScore W2020642148C105795698 @default.
- W2020642148 hasConceptScore W2020642148C106301342 @default.
- W2020642148 hasConceptScore W2020642148C111919701 @default.
- W2020642148 hasConceptScore W2020642148C11413529 @default.
- W2020642148 hasConceptScore W2020642148C121332964 @default.
- W2020642148 hasConceptScore W2020642148C124101348 @default.
- W2020642148 hasConceptScore W2020642148C129844170 @default.
- W2020642148 hasConceptScore W2020642148C131979681 @default.
- W2020642148 hasConceptScore W2020642148C154945302 @default.
- W2020642148 hasConceptScore W2020642148C165838908 @default.
- W2020642148 hasConceptScore W2020642148C2524010 @default.
- W2020642148 hasConceptScore W2020642148C26517878 @default.
- W2020642148 hasConceptScore W2020642148C2780009758 @default.
- W2020642148 hasConceptScore W2020642148C28719098 @default.
- W2020642148 hasConceptScore W2020642148C31972630 @default.
- W2020642148 hasConceptScore W2020642148C33923547 @default.
- W2020642148 hasConceptScore W2020642148C38652104 @default.
- W2020642148 hasConceptScore W2020642148C41008148 @default.
- W2020642148 hasConceptScore W2020642148C62520636 @default.
- W2020642148 hasConceptScore W2020642148C79974875 @default.
- W2020642148 hasConceptScore W2020642148C98045186 @default.
- W2020642148 hasIssue "5" @default.
- W2020642148 hasLocation W20206421481 @default.
- W2020642148 hasOpenAccess W2020642148 @default.