Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020643482> ?p ?o ?g. }
- W2020643482 endingPage "444" @default.
- W2020643482 startingPage "429" @default.
- W2020643482 abstract "The detection and location of leaks in water pipe networks is a significant problem, which would benefit from more effective solutions. The information about the presence and location of leaks in a pipe network could be contained in the distribution of pressure or flow values at various points in the network; however, the information is encoded in such a way that its extraction is a complex inverse engineering problem. Such problems can be solved effectively through the use of pattern recognition techniques such as artificial neural networks (ANNs) or support vector machines (SVMs). This article presents a method of using SVM analysis to interpret the data obtained by a collection of pressure sensors or flow-measuring devices monitoring a pipe network in order to obtain information about the location and size of leaks in the network." @default.
- W2020643482 created "2016-06-24" @default.
- W2020643482 creator A5011267018 @default.
- W2020643482 creator A5036496627 @default.
- W2020643482 creator A5052849024 @default.
- W2020643482 creator A5061557188 @default.
- W2020643482 date "2012-05-01" @default.
- W2020643482 modified "2023-10-06" @default.
- W2020643482 title "LEAK DETECTION IN SIMULATED WATER PIPE NETWORKS USING SVM" @default.
- W2020643482 cites W1563088657 @default.
- W2020643482 cites W1853804895 @default.
- W2020643482 cites W1992151643 @default.
- W2020643482 cites W2002457254 @default.
- W2020643482 cites W2037263214 @default.
- W2020643482 cites W2042204969 @default.
- W2020643482 cites W2075581597 @default.
- W2020643482 cites W2076751630 @default.
- W2020643482 cites W2156327047 @default.
- W2020643482 cites W2156909104 @default.
- W2020643482 cites W2164445311 @default.
- W2020643482 cites W2164487011 @default.
- W2020643482 doi "https://doi.org/10.1080/08839514.2012.670974" @default.
- W2020643482 hasPublicationYear "2012" @default.
- W2020643482 type Work @default.
- W2020643482 sameAs 2020643482 @default.
- W2020643482 citedByCount "53" @default.
- W2020643482 countsByYear W20206434822014 @default.
- W2020643482 countsByYear W20206434822015 @default.
- W2020643482 countsByYear W20206434822016 @default.
- W2020643482 countsByYear W20206434822017 @default.
- W2020643482 countsByYear W20206434822018 @default.
- W2020643482 countsByYear W20206434822019 @default.
- W2020643482 countsByYear W20206434822020 @default.
- W2020643482 countsByYear W20206434822021 @default.
- W2020643482 countsByYear W20206434822022 @default.
- W2020643482 countsByYear W20206434822023 @default.
- W2020643482 crossrefType "journal-article" @default.
- W2020643482 hasAuthorship W2020643482A5011267018 @default.
- W2020643482 hasAuthorship W2020643482A5036496627 @default.
- W2020643482 hasAuthorship W2020643482A5052849024 @default.
- W2020643482 hasAuthorship W2020643482A5061557188 @default.
- W2020643482 hasConcept C114809511 @default.
- W2020643482 hasConcept C121332964 @default.
- W2020643482 hasConcept C12267149 @default.
- W2020643482 hasConcept C124101348 @default.
- W2020643482 hasConcept C126255220 @default.
- W2020643482 hasConcept C127413603 @default.
- W2020643482 hasConcept C153180895 @default.
- W2020643482 hasConcept C154945302 @default.
- W2020643482 hasConcept C157115227 @default.
- W2020643482 hasConcept C201289731 @default.
- W2020643482 hasConcept C23966969 @default.
- W2020643482 hasConcept C2524010 @default.
- W2020643482 hasConcept C2780378346 @default.
- W2020643482 hasConcept C2987355568 @default.
- W2020643482 hasConcept C33923547 @default.
- W2020643482 hasConcept C38349280 @default.
- W2020643482 hasConcept C41008148 @default.
- W2020643482 hasConcept C50644808 @default.
- W2020643482 hasConcept C78519656 @default.
- W2020643482 hasConcept C87717796 @default.
- W2020643482 hasConcept C97355855 @default.
- W2020643482 hasConceptScore W2020643482C114809511 @default.
- W2020643482 hasConceptScore W2020643482C121332964 @default.
- W2020643482 hasConceptScore W2020643482C12267149 @default.
- W2020643482 hasConceptScore W2020643482C124101348 @default.
- W2020643482 hasConceptScore W2020643482C126255220 @default.
- W2020643482 hasConceptScore W2020643482C127413603 @default.
- W2020643482 hasConceptScore W2020643482C153180895 @default.
- W2020643482 hasConceptScore W2020643482C154945302 @default.
- W2020643482 hasConceptScore W2020643482C157115227 @default.
- W2020643482 hasConceptScore W2020643482C201289731 @default.
- W2020643482 hasConceptScore W2020643482C23966969 @default.
- W2020643482 hasConceptScore W2020643482C2524010 @default.
- W2020643482 hasConceptScore W2020643482C2780378346 @default.
- W2020643482 hasConceptScore W2020643482C2987355568 @default.
- W2020643482 hasConceptScore W2020643482C33923547 @default.
- W2020643482 hasConceptScore W2020643482C38349280 @default.
- W2020643482 hasConceptScore W2020643482C41008148 @default.
- W2020643482 hasConceptScore W2020643482C50644808 @default.
- W2020643482 hasConceptScore W2020643482C78519656 @default.
- W2020643482 hasConceptScore W2020643482C87717796 @default.
- W2020643482 hasConceptScore W2020643482C97355855 @default.
- W2020643482 hasIssue "5" @default.
- W2020643482 hasLocation W20206434821 @default.
- W2020643482 hasOpenAccess W2020643482 @default.
- W2020643482 hasPrimaryLocation W20206434821 @default.
- W2020643482 hasRelatedWork W1186397047 @default.
- W2020643482 hasRelatedWork W1992771762 @default.
- W2020643482 hasRelatedWork W2020643482 @default.
- W2020643482 hasRelatedWork W2090107756 @default.
- W2020643482 hasRelatedWork W2104486903 @default.
- W2020643482 hasRelatedWork W2356175326 @default.
- W2020643482 hasRelatedWork W2373043755 @default.
- W2020643482 hasRelatedWork W2386672582 @default.
- W2020643482 hasRelatedWork W2791683561 @default.
- W2020643482 hasRelatedWork W4205160428 @default.
- W2020643482 hasVolume "26" @default.