Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020652110> ?p ?o ?g. }
- W2020652110 endingPage "1001" @default.
- W2020652110 startingPage "997" @default.
- W2020652110 abstract "Green fluorescent protein and other genetically encodable optical reporters have revolutionized the study of cell function. Now Levskaya et al. describe a technology that adds a new dimension to cell biology by incorporating light-activated proteins from plants into mammalian cell signalling systems, leading to cells whose morphology and behaviour can be controlled by light. The system uses a reversible protein–protein interaction module from the Arabidopsis phytochrome-signalling network to reversibly translocate activators of the Rho-family GTPases to the plasma membrane. In principle, this advance makes it possible to design a variety of light-programmable reagents for a new generation of perturbative cell biology experiments. The use of light to precisely control cellular behaviour is a challenge that has only recently begun to be addressed. Here, a genetically encoded light-control system is demonstrated in mammalian cells. Based on a reversible protein–protein interaction from the phytochrome signalling network of Arabidopsis thaliana, the system is used to reversibly translocate activators of the Rho-family GTPases to the plasma membrane with high temporal and spatial resolution. Genetically encodable optical reporters, such as green fluorescent protein, have revolutionized the observation and measurement of cellular states. However, the inverse challenge of using light to control precisely cellular behaviour has only recently begun to be addressed; semi-synthetic chromophore-tethered receptors1 and naturally occurring channel rhodopsins have been used to perturb directly neuronal networks2,3. The difficulty of engineering light-sensitive proteins remains a significant impediment to the optical control of most cell-biological processes. Here we demonstrate the use of a new genetically encoded light-control system based on an optimized, reversible protein–protein interaction from the phytochrome signalling network of Arabidopsis thaliana. Because protein–protein interactions are one of the most general currencies of cellular information, this system can, in principle, be generically used to control diverse functions. Here we show that this system can be used to translocate target proteins precisely and reversibly to the membrane with micrometre spatial resolution and at the second timescale. We show that light-gated translocation of the upstream activators of Rho-family GTPases, which control the actin cytoskeleton, can be used to precisely reshape and direct the cell morphology of mammalian cells. The light-gated protein–protein interaction that has been optimized here should be useful for the design of diverse light-programmable reagents, potentially enabling a new generation of perturbative, quantitative experiments in cell biology." @default.
- W2020652110 created "2016-06-24" @default.
- W2020652110 creator A5006257775 @default.
- W2020652110 creator A5028170615 @default.
- W2020652110 creator A5039788638 @default.
- W2020652110 creator A5069544528 @default.
- W2020652110 date "2009-09-13" @default.
- W2020652110 modified "2023-10-18" @default.
- W2020652110 title "Spatiotemporal control of cell signalling using a light-switchable protein interaction" @default.
- W2020652110 cites W1551393329 @default.
- W2020652110 cites W1964926620 @default.
- W2020652110 cites W1969410032 @default.
- W2020652110 cites W1970944059 @default.
- W2020652110 cites W1987315263 @default.
- W2020652110 cites W1987935024 @default.
- W2020652110 cites W2003885556 @default.
- W2020652110 cites W2007513923 @default.
- W2020652110 cites W2013726100 @default.
- W2020652110 cites W2038294038 @default.
- W2020652110 cites W2055659589 @default.
- W2020652110 cites W2070559164 @default.
- W2020652110 cites W2076586496 @default.
- W2020652110 cites W2086703031 @default.
- W2020652110 cites W2090469070 @default.
- W2020652110 cites W2092533253 @default.
- W2020652110 cites W2099199220 @default.
- W2020652110 cites W2125479775 @default.
- W2020652110 cites W2130864801 @default.
- W2020652110 cites W2136498480 @default.
- W2020652110 cites W2137293306 @default.
- W2020652110 cites W2138090306 @default.
- W2020652110 cites W2147376890 @default.
- W2020652110 cites W2156164439 @default.
- W2020652110 cites W2162411580 @default.
- W2020652110 cites W2167095271 @default.
- W2020652110 doi "https://doi.org/10.1038/nature08446" @default.
- W2020652110 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2989900" @default.
- W2020652110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19749742" @default.
- W2020652110 hasPublicationYear "2009" @default.
- W2020652110 type Work @default.
- W2020652110 sameAs 2020652110 @default.
- W2020652110 citedByCount "876" @default.
- W2020652110 countsByYear W20206521102012 @default.
- W2020652110 countsByYear W20206521102013 @default.
- W2020652110 countsByYear W20206521102014 @default.
- W2020652110 countsByYear W20206521102015 @default.
- W2020652110 countsByYear W20206521102016 @default.
- W2020652110 countsByYear W20206521102017 @default.
- W2020652110 countsByYear W20206521102018 @default.
- W2020652110 countsByYear W20206521102019 @default.
- W2020652110 countsByYear W20206521102020 @default.
- W2020652110 countsByYear W20206521102021 @default.
- W2020652110 countsByYear W20206521102022 @default.
- W2020652110 countsByYear W20206521102023 @default.
- W2020652110 crossrefType "journal-article" @default.
- W2020652110 hasAuthorship W2020652110A5006257775 @default.
- W2020652110 hasAuthorship W2020652110A5028170615 @default.
- W2020652110 hasAuthorship W2020652110A5039788638 @default.
- W2020652110 hasAuthorship W2020652110A5069544528 @default.
- W2020652110 hasBestOaLocation W20206521102 @default.
- W2020652110 hasConcept C104317684 @default.
- W2020652110 hasConcept C12554922 @default.
- W2020652110 hasConcept C142613039 @default.
- W2020652110 hasConcept C143065580 @default.
- W2020652110 hasConcept C185592680 @default.
- W2020652110 hasConcept C207332259 @default.
- W2020652110 hasConcept C2779491563 @default.
- W2020652110 hasConcept C2781446133 @default.
- W2020652110 hasConcept C2986477067 @default.
- W2020652110 hasConcept C3018449070 @default.
- W2020652110 hasConcept C39743133 @default.
- W2020652110 hasConcept C55493867 @default.
- W2020652110 hasConcept C59822182 @default.
- W2020652110 hasConcept C62478195 @default.
- W2020652110 hasConcept C86803240 @default.
- W2020652110 hasConcept C90180588 @default.
- W2020652110 hasConcept C95444343 @default.
- W2020652110 hasConceptScore W2020652110C104317684 @default.
- W2020652110 hasConceptScore W2020652110C12554922 @default.
- W2020652110 hasConceptScore W2020652110C142613039 @default.
- W2020652110 hasConceptScore W2020652110C143065580 @default.
- W2020652110 hasConceptScore W2020652110C185592680 @default.
- W2020652110 hasConceptScore W2020652110C207332259 @default.
- W2020652110 hasConceptScore W2020652110C2779491563 @default.
- W2020652110 hasConceptScore W2020652110C2781446133 @default.
- W2020652110 hasConceptScore W2020652110C2986477067 @default.
- W2020652110 hasConceptScore W2020652110C3018449070 @default.
- W2020652110 hasConceptScore W2020652110C39743133 @default.
- W2020652110 hasConceptScore W2020652110C55493867 @default.
- W2020652110 hasConceptScore W2020652110C59822182 @default.
- W2020652110 hasConceptScore W2020652110C62478195 @default.
- W2020652110 hasConceptScore W2020652110C86803240 @default.
- W2020652110 hasConceptScore W2020652110C90180588 @default.
- W2020652110 hasConceptScore W2020652110C95444343 @default.
- W2020652110 hasIssue "7266" @default.
- W2020652110 hasLocation W20206521101 @default.
- W2020652110 hasLocation W20206521102 @default.
- W2020652110 hasLocation W20206521103 @default.