Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020668506> ?p ?o ?g. }
- W2020668506 endingPage "39" @default.
- W2020668506 startingPage "26" @default.
- W2020668506 abstract "Nowadays, many real applications comprise data-sets where the distribution of the classes is significantly different. These data-sets are commonly known as imbalanced data-sets. Traditional classifiers are not able to deal with these kinds of data-sets because they tend to classify only majority classes, obtaining poor results for minority classes. The approaches that have been proposed to address this problem can be categorized into three types: resampling methods, algorithmic adaptations and cost sensitive techniques. Radial Basis Function Networks (RBFNs), artificial neural networks composed of local models or RBFs, have demonstrated their efficiency in different machine learning areas. Centers, widths and output weights for the RBFs must be determined when designing RBFNs. Taking into account the locally tuned response of RBFs, the objective of this paper is to study the influence of global and local paradigms on the weights training phase, within the RBFNs design methodology, for imbalanced data-sets. Least Mean Square and the Singular Value Decomposition have been chosen as representatives of local and global weights training paradigms respectively. These learning algorithms are inserted into classical RBFN design methods that are run on imbalanced data-sets and also on these data-sets preprocessed with re-balance techniques. After applying statistical tests to the results obtained, some guidelines about the RBFN design methodology for imbalanced data-sets are provided." @default.
- W2020668506 created "2016-06-24" @default.
- W2020668506 creator A5013050144 @default.
- W2020668506 creator A5019110713 @default.
- W2020668506 creator A5032030004 @default.
- W2020668506 creator A5071359047 @default.
- W2020668506 date "2014-12-01" @default.
- W2020668506 modified "2023-10-17" @default.
- W2020668506 title "Training algorithms for Radial Basis Function Networks to tackle learning processes with imbalanced data-sets" @default.
- W2020668506 cites W1973495997 @default.
- W2020668506 cites W1986515506 @default.
- W2020668506 cites W1990521272 @default.
- W2020668506 cites W1992176519 @default.
- W2020668506 cites W1993220166 @default.
- W2020668506 cites W1995234002 @default.
- W2020668506 cites W2016451439 @default.
- W2020668506 cites W2023639956 @default.
- W2020668506 cites W2026435490 @default.
- W2020668506 cites W2032827717 @default.
- W2020668506 cites W2034341542 @default.
- W2020668506 cites W2049736842 @default.
- W2020668506 cites W2053724458 @default.
- W2020668506 cites W2062620732 @default.
- W2020668506 cites W2063284749 @default.
- W2020668506 cites W2064599931 @default.
- W2020668506 cites W2070356494 @default.
- W2020668506 cites W2071972720 @default.
- W2020668506 cites W2073849139 @default.
- W2020668506 cites W2081057410 @default.
- W2020668506 cites W2083482104 @default.
- W2020668506 cites W2090135786 @default.
- W2020668506 cites W2091874944 @default.
- W2020668506 cites W2095343772 @default.
- W2020668506 cites W2096942889 @default.
- W2020668506 cites W2099435377 @default.
- W2020668506 cites W2100211715 @default.
- W2020668506 cites W2100714230 @default.
- W2020668506 cites W2101075842 @default.
- W2020668506 cites W2103614420 @default.
- W2020668506 cites W2105217850 @default.
- W2020668506 cites W2105340608 @default.
- W2020668506 cites W2106504576 @default.
- W2020668506 cites W2111990972 @default.
- W2020668506 cites W2113442785 @default.
- W2020668506 cites W2114865067 @default.
- W2020668506 cites W2115946704 @default.
- W2020668506 cites W2116424792 @default.
- W2020668506 cites W2119191234 @default.
- W2020668506 cites W2123207935 @default.
- W2020668506 cites W2124386567 @default.
- W2020668506 cites W2129362211 @default.
- W2020668506 cites W2132678073 @default.
- W2020668506 cites W2135951444 @default.
- W2020668506 cites W2136772527 @default.
- W2020668506 cites W2138661420 @default.
- W2020668506 cites W2143429901 @default.
- W2020668506 cites W2148143831 @default.
- W2020668506 cites W2155399784 @default.
- W2020668506 cites W2156530876 @default.
- W2020668506 cites W2164330572 @default.
- W2020668506 cites W2164341120 @default.
- W2020668506 cites W2171277043 @default.
- W2020668506 cites W2319594879 @default.
- W2020668506 doi "https://doi.org/10.1016/j.asoc.2014.09.011" @default.
- W2020668506 hasPublicationYear "2014" @default.
- W2020668506 type Work @default.
- W2020668506 sameAs 2020668506 @default.
- W2020668506 citedByCount "25" @default.
- W2020668506 countsByYear W20206685062015 @default.
- W2020668506 countsByYear W20206685062016 @default.
- W2020668506 countsByYear W20206685062017 @default.
- W2020668506 countsByYear W20206685062018 @default.
- W2020668506 countsByYear W20206685062019 @default.
- W2020668506 countsByYear W20206685062020 @default.
- W2020668506 countsByYear W20206685062021 @default.
- W2020668506 countsByYear W20206685062022 @default.
- W2020668506 countsByYear W20206685062023 @default.
- W2020668506 crossrefType "journal-article" @default.
- W2020668506 hasAuthorship W2020668506A5013050144 @default.
- W2020668506 hasAuthorship W2020668506A5019110713 @default.
- W2020668506 hasAuthorship W2020668506A5032030004 @default.
- W2020668506 hasAuthorship W2020668506A5071359047 @default.
- W2020668506 hasConcept C11413529 @default.
- W2020668506 hasConcept C119857082 @default.
- W2020668506 hasConcept C124101348 @default.
- W2020668506 hasConcept C14036430 @default.
- W2020668506 hasConcept C150921843 @default.
- W2020668506 hasConcept C154945302 @default.
- W2020668506 hasConcept C41008148 @default.
- W2020668506 hasConcept C50644808 @default.
- W2020668506 hasConcept C78458016 @default.
- W2020668506 hasConcept C86803240 @default.
- W2020668506 hasConcept C98856871 @default.
- W2020668506 hasConceptScore W2020668506C11413529 @default.
- W2020668506 hasConceptScore W2020668506C119857082 @default.
- W2020668506 hasConceptScore W2020668506C124101348 @default.
- W2020668506 hasConceptScore W2020668506C14036430 @default.
- W2020668506 hasConceptScore W2020668506C150921843 @default.