Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020697366> ?p ?o ?g. }
- W2020697366 abstract "A training algorithm for multilayer perceptrons is discussed and studied in detail, which relates to the technique of principal component analysis. The latter is performed with respect to a correlation matrix computed from the example inputs and their target outputs. Typical properties of the training procedure are investigated by means of a statistical physics analysis in models of learning regression and classification tasks. We demonstrate that the procedure requires by far fewer examples for good generalization than traditional online training. For networks with a large number of hidden units we derive the training prescription which achieves, within our model, the optimal generalization behavior." @default.
- W2020697366 created "2016-06-24" @default.
- W2020697366 creator A5032338878 @default.
- W2020697366 creator A5069703583 @default.
- W2020697366 creator A5083548477 @default.
- W2020697366 date "2005-08-16" @default.
- W2020697366 modified "2023-09-24" @default.
- W2020697366 title "Efficient training of multilayer perceptrons using principal component analysis" @default.
- W2020697366 cites W1966897734 @default.
- W2020697366 cites W1969891152 @default.
- W2020697366 cites W2006060538 @default.
- W2020697366 cites W2010581677 @default.
- W2020697366 cites W2013773819 @default.
- W2020697366 cites W2034306405 @default.
- W2020697366 cites W2037985840 @default.
- W2020697366 cites W2042318263 @default.
- W2020697366 cites W2043833116 @default.
- W2020697366 cites W2047962774 @default.
- W2020697366 cites W2066925641 @default.
- W2020697366 cites W2068476337 @default.
- W2020697366 cites W2103496339 @default.
- W2020697366 cites W2150872430 @default.
- W2020697366 doi "https://doi.org/10.1103/physreve.72.026117" @default.
- W2020697366 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16196654" @default.
- W2020697366 hasPublicationYear "2005" @default.
- W2020697366 type Work @default.
- W2020697366 sameAs 2020697366 @default.
- W2020697366 citedByCount "1" @default.
- W2020697366 crossrefType "journal-article" @default.
- W2020697366 hasAuthorship W2020697366A5032338878 @default.
- W2020697366 hasAuthorship W2020697366A5069703583 @default.
- W2020697366 hasAuthorship W2020697366A5083548477 @default.
- W2020697366 hasBestOaLocation W20206973662 @default.
- W2020697366 hasConcept C105795698 @default.
- W2020697366 hasConcept C106487976 @default.
- W2020697366 hasConcept C11413529 @default.
- W2020697366 hasConcept C119857082 @default.
- W2020697366 hasConcept C121332964 @default.
- W2020697366 hasConcept C124101348 @default.
- W2020697366 hasConcept C134306372 @default.
- W2020697366 hasConcept C153180895 @default.
- W2020697366 hasConcept C153294291 @default.
- W2020697366 hasConcept C154945302 @default.
- W2020697366 hasConcept C159985019 @default.
- W2020697366 hasConcept C168167062 @default.
- W2020697366 hasConcept C177148314 @default.
- W2020697366 hasConcept C179717631 @default.
- W2020697366 hasConcept C192562407 @default.
- W2020697366 hasConcept C27438332 @default.
- W2020697366 hasConcept C2777211547 @default.
- W2020697366 hasConcept C2780692498 @default.
- W2020697366 hasConcept C33923547 @default.
- W2020697366 hasConcept C41008148 @default.
- W2020697366 hasConcept C50644808 @default.
- W2020697366 hasConcept C60908668 @default.
- W2020697366 hasConcept C83546350 @default.
- W2020697366 hasConcept C97355855 @default.
- W2020697366 hasConceptScore W2020697366C105795698 @default.
- W2020697366 hasConceptScore W2020697366C106487976 @default.
- W2020697366 hasConceptScore W2020697366C11413529 @default.
- W2020697366 hasConceptScore W2020697366C119857082 @default.
- W2020697366 hasConceptScore W2020697366C121332964 @default.
- W2020697366 hasConceptScore W2020697366C124101348 @default.
- W2020697366 hasConceptScore W2020697366C134306372 @default.
- W2020697366 hasConceptScore W2020697366C153180895 @default.
- W2020697366 hasConceptScore W2020697366C153294291 @default.
- W2020697366 hasConceptScore W2020697366C154945302 @default.
- W2020697366 hasConceptScore W2020697366C159985019 @default.
- W2020697366 hasConceptScore W2020697366C168167062 @default.
- W2020697366 hasConceptScore W2020697366C177148314 @default.
- W2020697366 hasConceptScore W2020697366C179717631 @default.
- W2020697366 hasConceptScore W2020697366C192562407 @default.
- W2020697366 hasConceptScore W2020697366C27438332 @default.
- W2020697366 hasConceptScore W2020697366C2777211547 @default.
- W2020697366 hasConceptScore W2020697366C2780692498 @default.
- W2020697366 hasConceptScore W2020697366C33923547 @default.
- W2020697366 hasConceptScore W2020697366C41008148 @default.
- W2020697366 hasConceptScore W2020697366C50644808 @default.
- W2020697366 hasConceptScore W2020697366C60908668 @default.
- W2020697366 hasConceptScore W2020697366C83546350 @default.
- W2020697366 hasConceptScore W2020697366C97355855 @default.
- W2020697366 hasIssue "2" @default.
- W2020697366 hasLocation W20206973661 @default.
- W2020697366 hasLocation W20206973662 @default.
- W2020697366 hasLocation W20206973663 @default.
- W2020697366 hasOpenAccess W2020697366 @default.
- W2020697366 hasPrimaryLocation W20206973661 @default.
- W2020697366 hasRelatedWork W1551818188 @default.
- W2020697366 hasRelatedWork W2020697366 @default.
- W2020697366 hasRelatedWork W2338394561 @default.
- W2020697366 hasRelatedWork W3028499805 @default.
- W2020697366 hasRelatedWork W3208179741 @default.
- W2020697366 hasRelatedWork W4220663171 @default.
- W2020697366 hasRelatedWork W4225307033 @default.
- W2020697366 hasRelatedWork W4231994957 @default.
- W2020697366 hasRelatedWork W4280611221 @default.
- W2020697366 hasRelatedWork W203163403 @default.
- W2020697366 hasVolume "72" @default.
- W2020697366 isParatext "false" @default.
- W2020697366 isRetracted "false" @default.