Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020709872> ?p ?o ?g. }
- W2020709872 endingPage "1531" @default.
- W2020709872 startingPage "1521" @default.
- W2020709872 abstract "Abstract Pincer‐type palladium complexes are among the most active Heck catalysts. Due to their exceptionally high thermal stability and the fact that they contain Pd II centers, controversial Pd II /Pd IV cycles have been often proposed as potential catalytic mechanisms. However, pincer‐type Pd IV intermediates have never been experimentally observed, and computational studies to support the proposed Pd II /Pd IV mechanisms with pincer‐type catalysts have never been carried out. In this computational study the feasibility of potential catalytic cycles involving Pd IV intermediates was explored. Density functional calculations were performed on experimentally applied aminophosphine‐, phosphine‐, and phosphite‐based pincer‐type Heck catalysts with styrene and phenyl bromide as substrates and ( E )‐stilbene as coupling product. The potential‐energy surfaces were calculated in dimethylformamide (DMF) as solvent and demonstrate that Pd II /Pd IV mechanisms are thermally accessible and thus a true alternative to formation of palladium nanoparticles. Initial reaction steps of the lowest energy path of the catalytic cycle of the Heck reaction include dissociation of the chloride ligands from the neutral pincer complexes [{2,6‐C 6 H 3 (XPR 2 ) 2 }Pd(Cl)] [X=NH, R=piperidinyl ( 1 a ); X=O, R=piperidinyl ( 1 b ); X=O, R= i Pr ( 1 c ); X=CH 2 , R= i Pr ( 1 d )] to yield cationic, three‐coordinate, T‐shaped 14e − palladium intermediates of type [{2,6‐C 6 H 3 (XPR 2 ) 2 }Pd] + ( 2 ). An alternative reaction path to generate complexes of type 2 (relevant for electron‐poor pincer complexes) includes initial coordination of styrene to 1 to yield styrene adducts [{2,6‐C 6 H 3 (XPR 2 ) 2 }Pd(Cl)(CH 2 CHPh)] ( 4 ) and consecutive dissociation of the chloride ligand to yield cationic square‐planar styrene complexes [{2,6‐C 6 H 3 (XPR 2 ) 2 }Pd(CH 2 CHPh)] + ( 6 ) and styrene. Cationic styrene adducts of type 6 were additionally found to be the resting states of the catalytic reaction. However, oxidative addition of phenyl bromide to 2 result in pentacoordinate Pd IV complexes of type [{2,6‐C 6 H 3 (XPR 2 ) 2 }Pd(Br)(C 6 H 5 )] + ( 11 ), which subsequently coordinate styrene (in trans position relative to the phenyl unit of the pincer cores) to yield hexacoordinate phenyl styrene complexes [{2,6‐C 6 H 3 (XPR 2 ) 2 }Pd(Br)(C 6 H 5 )(CH 2 CHPh)] + ( 12 ). Migration of the phenyl ligand to the olefinic bond gives cationic, pentacoordinate phenylethenyl complexes [{2,6‐C 6 H 3 (XPR 2 ) 2 }Pd(Br)(CHPhCH 2 Ph)] + ( 13 ). Subsequent β‐hydride elimination induces direct HBr liberation to yield cationic, square‐planar ( E )‐stilbene complexes with general formula [{2,6‐C 6 H 3 (XPR 2 ) 2 }Pd(CHPhCHPh)] + ( 14 ). Subsequent liberation of ( E )‐stilbene closes the catalytic cycle." @default.
- W2020709872 created "2016-06-24" @default.
- W2020709872 creator A5041097915 @default.
- W2020709872 creator A5063162640 @default.
- W2020709872 date "2010-01-26" @default.
- W2020709872 modified "2023-10-18" @default.
- W2020709872 title "Pincer-Type Heck Catalysts and Mechanisms Based on Pd<sup>IV</sup>Intermediates: A Computational Study" @default.
- W2020709872 cites W1966627353 @default.
- W2020709872 cites W1969936568 @default.
- W2020709872 cites W1971114553 @default.
- W2020709872 cites W1982980014 @default.
- W2020709872 cites W1992899849 @default.
- W2020709872 cites W1999962180 @default.
- W2020709872 cites W2000855413 @default.
- W2020709872 cites W2001461847 @default.
- W2020709872 cites W2011500819 @default.
- W2020709872 cites W2012309034 @default.
- W2020709872 cites W2015723183 @default.
- W2020709872 cites W2016401954 @default.
- W2020709872 cites W2018920707 @default.
- W2020709872 cites W2024988603 @default.
- W2020709872 cites W2026539556 @default.
- W2020709872 cites W2026547785 @default.
- W2020709872 cites W2037733556 @default.
- W2020709872 cites W2039559098 @default.
- W2020709872 cites W2046412723 @default.
- W2020709872 cites W2053053717 @default.
- W2020709872 cites W2058504095 @default.
- W2020709872 cites W2058848030 @default.
- W2020709872 cites W2062186637 @default.
- W2020709872 cites W2064090794 @default.
- W2020709872 cites W2082917109 @default.
- W2020709872 cites W2095404365 @default.
- W2020709872 cites W2099615748 @default.
- W2020709872 cites W2100127507 @default.
- W2020709872 cites W2107165605 @default.
- W2020709872 cites W2108596841 @default.
- W2020709872 cites W2117894566 @default.
- W2020709872 cites W2139916893 @default.
- W2020709872 cites W2166279905 @default.
- W2020709872 cites W2167770936 @default.
- W2020709872 cites W2167943526 @default.
- W2020709872 cites W2950042323 @default.
- W2020709872 cites W2951270474 @default.
- W2020709872 cites W4249074755 @default.
- W2020709872 doi "https://doi.org/10.1002/chem.200902091" @default.
- W2020709872 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20024984" @default.
- W2020709872 hasPublicationYear "2010" @default.
- W2020709872 type Work @default.
- W2020709872 sameAs 2020709872 @default.
- W2020709872 citedByCount "42" @default.
- W2020709872 countsByYear W20207098722012 @default.
- W2020709872 countsByYear W20207098722013 @default.
- W2020709872 countsByYear W20207098722014 @default.
- W2020709872 countsByYear W20207098722015 @default.
- W2020709872 countsByYear W20207098722016 @default.
- W2020709872 countsByYear W20207098722017 @default.
- W2020709872 countsByYear W20207098722018 @default.
- W2020709872 countsByYear W20207098722019 @default.
- W2020709872 countsByYear W20207098722020 @default.
- W2020709872 countsByYear W20207098722021 @default.
- W2020709872 crossrefType "journal-article" @default.
- W2020709872 hasAuthorship W2020709872A5041097915 @default.
- W2020709872 hasAuthorship W2020709872A5063162640 @default.
- W2020709872 hasConcept C155647269 @default.
- W2020709872 hasConcept C161790260 @default.
- W2020709872 hasConcept C168896768 @default.
- W2020709872 hasConcept C178790620 @default.
- W2020709872 hasConcept C185592680 @default.
- W2020709872 hasConcept C2777712214 @default.
- W2020709872 hasConcept C2777716191 @default.
- W2020709872 hasConcept C2780471494 @default.
- W2020709872 hasConcept C502130503 @default.
- W2020709872 hasConcept C63338738 @default.
- W2020709872 hasConcept C75473681 @default.
- W2020709872 hasConcept C91819851 @default.
- W2020709872 hasConceptScore W2020709872C155647269 @default.
- W2020709872 hasConceptScore W2020709872C161790260 @default.
- W2020709872 hasConceptScore W2020709872C168896768 @default.
- W2020709872 hasConceptScore W2020709872C178790620 @default.
- W2020709872 hasConceptScore W2020709872C185592680 @default.
- W2020709872 hasConceptScore W2020709872C2777712214 @default.
- W2020709872 hasConceptScore W2020709872C2777716191 @default.
- W2020709872 hasConceptScore W2020709872C2780471494 @default.
- W2020709872 hasConceptScore W2020709872C502130503 @default.
- W2020709872 hasConceptScore W2020709872C63338738 @default.
- W2020709872 hasConceptScore W2020709872C75473681 @default.
- W2020709872 hasConceptScore W2020709872C91819851 @default.
- W2020709872 hasIssue "5" @default.
- W2020709872 hasLocation W20207098721 @default.
- W2020709872 hasLocation W20207098722 @default.
- W2020709872 hasOpenAccess W2020709872 @default.
- W2020709872 hasPrimaryLocation W20207098721 @default.
- W2020709872 hasRelatedWork W2026547785 @default.
- W2020709872 hasRelatedWork W2072470504 @default.
- W2020709872 hasRelatedWork W2088492646 @default.
- W2020709872 hasRelatedWork W2315644161 @default.
- W2020709872 hasRelatedWork W2618081759 @default.