Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020712908> ?p ?o ?g. }
- W2020712908 endingPage "414" @default.
- W2020712908 startingPage "407" @default.
- W2020712908 abstract "Within the framework of the kinetic energy driven superconductivity, the electromagnetic response in cuprate superconductors is studied in the linear response approach. The kernel of the response function is evaluated and employed to calculate the local magnetic field profile, the magnetic field penetration depth, and the superfluid density, based on the specular reflection model for a purely transverse vector potential. It is shown that the low temperature magnetic field profile follows an exponential decay at the surface, while the magnetic field penetration depth depends linearly on temperature, except for the strong deviation from the linear characteristics at extremely low temperatures. The superfluid density is found to decrease linearly with decreasing doping concentration in the underdoped regime. The problem of gauge invariance is addressed and an approximation for the dressed current vertex, which does not violate local charge conservation is proposed and discussed." @default.
- W2020712908 created "2016-06-24" @default.
- W2020712908 creator A5008663031 @default.
- W2020712908 creator A5014357502 @default.
- W2020712908 creator A5057021628 @default.
- W2020712908 creator A5088335981 @default.
- W2020712908 date "2010-04-01" @default.
- W2020712908 modified "2023-10-16" @default.
- W2020712908 title "Electromagnetic response in kinetic energy driven cuprate superconductors: Linear response approach" @default.
- W2020712908 cites W1518968719 @default.
- W2020712908 cites W1537300929 @default.
- W2020712908 cites W1569640404 @default.
- W2020712908 cites W1582252665 @default.
- W2020712908 cites W1583581399 @default.
- W2020712908 cites W1594348062 @default.
- W2020712908 cites W1608180248 @default.
- W2020712908 cites W1667374469 @default.
- W2020712908 cites W1867490250 @default.
- W2020712908 cites W1964976507 @default.
- W2020712908 cites W1966778872 @default.
- W2020712908 cites W1967778054 @default.
- W2020712908 cites W1969453610 @default.
- W2020712908 cites W1969739774 @default.
- W2020712908 cites W1970827489 @default.
- W2020712908 cites W1973663126 @default.
- W2020712908 cites W1976912055 @default.
- W2020712908 cites W1978560608 @default.
- W2020712908 cites W1979688708 @default.
- W2020712908 cites W1981210138 @default.
- W2020712908 cites W1984547998 @default.
- W2020712908 cites W1990983029 @default.
- W2020712908 cites W1994077064 @default.
- W2020712908 cites W2000634194 @default.
- W2020712908 cites W2001262102 @default.
- W2020712908 cites W2003378896 @default.
- W2020712908 cites W2006014253 @default.
- W2020712908 cites W2011009503 @default.
- W2020712908 cites W2011590758 @default.
- W2020712908 cites W2011648299 @default.
- W2020712908 cites W2015415013 @default.
- W2020712908 cites W2021720165 @default.
- W2020712908 cites W2024270659 @default.
- W2020712908 cites W2024508943 @default.
- W2020712908 cites W2026246144 @default.
- W2020712908 cites W2029536527 @default.
- W2020712908 cites W2036952710 @default.
- W2020712908 cites W2037927395 @default.
- W2020712908 cites W2042484696 @default.
- W2020712908 cites W2044885606 @default.
- W2020712908 cites W2047259364 @default.
- W2020712908 cites W2055564641 @default.
- W2020712908 cites W2062256992 @default.
- W2020712908 cites W2063846460 @default.
- W2020712908 cites W2065669097 @default.
- W2020712908 cites W2066032236 @default.
- W2020712908 cites W2067527917 @default.
- W2020712908 cites W2071246696 @default.
- W2020712908 cites W2071527470 @default.
- W2020712908 cites W2073127206 @default.
- W2020712908 cites W2075444143 @default.
- W2020712908 cites W2080206198 @default.
- W2020712908 cites W2080622559 @default.
- W2020712908 cites W2083839328 @default.
- W2020712908 cites W2084751699 @default.
- W2020712908 cites W2085385926 @default.
- W2020712908 cites W2093557807 @default.
- W2020712908 cites W2094609957 @default.
- W2020712908 cites W2110647683 @default.
- W2020712908 cites W2130063044 @default.
- W2020712908 cites W2141426152 @default.
- W2020712908 cites W2145917200 @default.
- W2020712908 cites W2150256662 @default.
- W2020712908 cites W2166647264 @default.
- W2020712908 cites W2321221134 @default.
- W2020712908 cites W2396656535 @default.
- W2020712908 cites W2411754510 @default.
- W2020712908 cites W2598876641 @default.
- W2020712908 cites W2768217318 @default.
- W2020712908 cites W2997872173 @default.
- W2020712908 doi "https://doi.org/10.1016/j.physc.2010.02.092" @default.
- W2020712908 hasPublicationYear "2010" @default.
- W2020712908 type Work @default.
- W2020712908 sameAs 2020712908 @default.
- W2020712908 citedByCount "7" @default.
- W2020712908 countsByYear W20207129082015 @default.
- W2020712908 countsByYear W20207129082019 @default.
- W2020712908 crossrefType "journal-article" @default.
- W2020712908 hasAuthorship W2020712908A5008663031 @default.
- W2020712908 hasAuthorship W2020712908A5014357502 @default.
- W2020712908 hasAuthorship W2020712908A5057021628 @default.
- W2020712908 hasAuthorship W2020712908A5088335981 @default.
- W2020712908 hasBestOaLocation W20207129082 @default.
- W2020712908 hasConcept C115260700 @default.
- W2020712908 hasConcept C121332964 @default.
- W2020712908 hasConcept C130893637 @default.
- W2020712908 hasConcept C135889238 @default.
- W2020712908 hasConcept C193493375 @default.
- W2020712908 hasConcept C25536358 @default.