Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020742013> ?p ?o ?g. }
- W2020742013 endingPage "77" @default.
- W2020742013 startingPage "67" @default.
- W2020742013 abstract "Magnetic Resonance images are used to identify tears in the meniscus, a debilitating condition of the knee. In this paper, a two-staged computerized system for diagnosing meniscus tears is proposed. In the first stage, we apply an Active Contour with Level Sets model to calculate the location and shape of the meniscus area. In the second stage, 180 features, consisting of textural information in the spatial and spectral domains, were extracted from each suspected meniscus tear. Sequential floating forward selection (SFFS) was applied to select the relevant features. The feature vectors were then input to a support vector machine (SVM) classifier to detect meniscus tears. The Az value of the receiver operating characteristic (ROC) curve were used to evaluate the classification performance. Experimental results show that the dimension of the feature vector was reduced from 180 to 64 after the SFFS. Meanwhile, the SVM classifier combined with the SFFS feature selection (Az = 0.9123) outperformed the SVM classifier without feature selection (Az = 0.7273)." @default.
- W2020742013 created "2016-06-24" @default.
- W2020742013 creator A5009817905 @default.
- W2020742013 creator A5012350104 @default.
- W2020742013 creator A5030353093 @default.
- W2020742013 creator A5045499001 @default.
- W2020742013 date "2013-03-01" @default.
- W2020742013 modified "2023-10-02" @default.
- W2020742013 title "Computer-aided diagnosis for knee meniscus tears in magnetic resonance imaging" @default.
- W2020742013 cites W1498973056 @default.
- W2020742013 cites W1963665962 @default.
- W2020742013 cites W1974394463 @default.
- W2020742013 cites W1976665092 @default.
- W2020742013 cites W1991113069 @default.
- W2020742013 cites W1995137807 @default.
- W2020742013 cites W1996325374 @default.
- W2020742013 cites W1999285346 @default.
- W2020742013 cites W2010136358 @default.
- W2020742013 cites W2014915963 @default.
- W2020742013 cites W2020565708 @default.
- W2020742013 cites W2026889212 @default.
- W2020742013 cites W2033584222 @default.
- W2020742013 cites W2044465660 @default.
- W2020742013 cites W2045562512 @default.
- W2020742013 cites W2057241917 @default.
- W2020742013 cites W2059813381 @default.
- W2020742013 cites W2081687972 @default.
- W2020742013 cites W2094395422 @default.
- W2020742013 cites W2094538577 @default.
- W2020742013 cites W2104737162 @default.
- W2020742013 cites W2108995755 @default.
- W2020742013 cites W2116040950 @default.
- W2020742013 cites W2118172064 @default.
- W2020742013 cites W2130401688 @default.
- W2020742013 cites W2145136815 @default.
- W2020742013 cites W2164069645 @default.
- W2020742013 doi "https://doi.org/10.1080/10170669.2012.761285" @default.
- W2020742013 hasPublicationYear "2013" @default.
- W2020742013 type Work @default.
- W2020742013 sameAs 2020742013 @default.
- W2020742013 citedByCount "7" @default.
- W2020742013 countsByYear W20207420132016 @default.
- W2020742013 countsByYear W20207420132020 @default.
- W2020742013 countsByYear W20207420132022 @default.
- W2020742013 countsByYear W20207420132023 @default.
- W2020742013 crossrefType "journal-article" @default.
- W2020742013 hasAuthorship W2020742013A5009817905 @default.
- W2020742013 hasAuthorship W2020742013A5012350104 @default.
- W2020742013 hasAuthorship W2020742013A5030353093 @default.
- W2020742013 hasAuthorship W2020742013A5045499001 @default.
- W2020742013 hasConcept C119857082 @default.
- W2020742013 hasConcept C120665830 @default.
- W2020742013 hasConcept C121332964 @default.
- W2020742013 hasConcept C12267149 @default.
- W2020742013 hasConcept C126838900 @default.
- W2020742013 hasConcept C141071460 @default.
- W2020742013 hasConcept C143409427 @default.
- W2020742013 hasConcept C148483581 @default.
- W2020742013 hasConcept C153180895 @default.
- W2020742013 hasConcept C154945302 @default.
- W2020742013 hasConcept C189178095 @default.
- W2020742013 hasConcept C2778275304 @default.
- W2020742013 hasConcept C31972630 @default.
- W2020742013 hasConcept C41008148 @default.
- W2020742013 hasConcept C58471807 @default.
- W2020742013 hasConcept C61511704 @default.
- W2020742013 hasConcept C71924100 @default.
- W2020742013 hasConcept C95623464 @default.
- W2020742013 hasConceptScore W2020742013C119857082 @default.
- W2020742013 hasConceptScore W2020742013C120665830 @default.
- W2020742013 hasConceptScore W2020742013C121332964 @default.
- W2020742013 hasConceptScore W2020742013C12267149 @default.
- W2020742013 hasConceptScore W2020742013C126838900 @default.
- W2020742013 hasConceptScore W2020742013C141071460 @default.
- W2020742013 hasConceptScore W2020742013C143409427 @default.
- W2020742013 hasConceptScore W2020742013C148483581 @default.
- W2020742013 hasConceptScore W2020742013C153180895 @default.
- W2020742013 hasConceptScore W2020742013C154945302 @default.
- W2020742013 hasConceptScore W2020742013C189178095 @default.
- W2020742013 hasConceptScore W2020742013C2778275304 @default.
- W2020742013 hasConceptScore W2020742013C31972630 @default.
- W2020742013 hasConceptScore W2020742013C41008148 @default.
- W2020742013 hasConceptScore W2020742013C58471807 @default.
- W2020742013 hasConceptScore W2020742013C61511704 @default.
- W2020742013 hasConceptScore W2020742013C71924100 @default.
- W2020742013 hasConceptScore W2020742013C95623464 @default.
- W2020742013 hasIssue "2" @default.
- W2020742013 hasLocation W20207420131 @default.
- W2020742013 hasOpenAccess W2020742013 @default.
- W2020742013 hasPrimaryLocation W20207420131 @default.
- W2020742013 hasRelatedWork W2041399278 @default.
- W2020742013 hasRelatedWork W2056016498 @default.
- W2020742013 hasRelatedWork W2136184105 @default.
- W2020742013 hasRelatedWork W2336974148 @default.
- W2020742013 hasRelatedWork W2389470892 @default.
- W2020742013 hasRelatedWork W2563096758 @default.
- W2020742013 hasRelatedWork W3013515612 @default.
- W2020742013 hasRelatedWork W4293087713 @default.