Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020752404> ?p ?o ?g. }
- W2020752404 endingPage "87" @default.
- W2020752404 startingPage "78" @default.
- W2020752404 abstract "Ground-motion prediction equations (GMPEs), which are known as a key component of any seismic hazard analysis, serve as an appropriate tool for estimating the values of ground motion parameters for future earthquake. Toward this goal, candidate ground motion models should be selected in an appropriate way to capture the expected values in the target region. This paper presents a novel, efficient approach for ranking of ground motion prediction equations based on artificial neural network (ANN). The nonlinear nature of ANN is also working as an efficient-robust system for weighting of different GMPEs which could be used in logic tree branch of seismic hazard analysis. An effective type of radial-basis neural network named generalized regression neural networks (GRNN) as a one-pass learning algorithm was chosen in this study. The proposed approach has been tested based on the results achieved using two goodness of fit indicators, Nash-Sutcliffe efficiency coefficient and median LH value which confirms high potential of designed GRNN for ranking of ground motion prediction equations." @default.
- W2020752404 created "2016-06-24" @default.
- W2020752404 creator A5037890027 @default.
- W2020752404 date "2012-08-01" @default.
- W2020752404 modified "2023-10-17" @default.
- W2020752404 title "A new method for ranking and weighting of earthquake ground-motion prediction models" @default.
- W2020752404 cites W149442419 @default.
- W2020752404 cites W1966191720 @default.
- W2020752404 cites W1980337617 @default.
- W2020752404 cites W1989211231 @default.
- W2020752404 cites W1992602466 @default.
- W2020752404 cites W1993179144 @default.
- W2020752404 cites W1994796627 @default.
- W2020752404 cites W1998652378 @default.
- W2020752404 cites W2002792161 @default.
- W2020752404 cites W2004260750 @default.
- W2020752404 cites W2008206416 @default.
- W2020752404 cites W2018705817 @default.
- W2020752404 cites W2028801653 @default.
- W2020752404 cites W2029343711 @default.
- W2020752404 cites W2032442012 @default.
- W2020752404 cites W2034859224 @default.
- W2020752404 cites W2041342522 @default.
- W2020752404 cites W2047409389 @default.
- W2020752404 cites W2048796786 @default.
- W2020752404 cites W2051231715 @default.
- W2020752404 cites W2052094398 @default.
- W2020752404 cites W2066096349 @default.
- W2020752404 cites W2080874041 @default.
- W2020752404 cites W2083679811 @default.
- W2020752404 cites W2084414514 @default.
- W2020752404 cites W2086952579 @default.
- W2020752404 cites W2088300728 @default.
- W2020752404 cites W2094040832 @default.
- W2020752404 cites W2099635570 @default.
- W2020752404 cites W2101586627 @default.
- W2020752404 cites W2105574354 @default.
- W2020752404 cites W2114938644 @default.
- W2020752404 cites W2126518070 @default.
- W2020752404 cites W2144176246 @default.
- W2020752404 cites W2146859678 @default.
- W2020752404 cites W2149723649 @default.
- W2020752404 cites W2152935540 @default.
- W2020752404 cites W2153335355 @default.
- W2020752404 cites W2157501616 @default.
- W2020752404 cites W2158961909 @default.
- W2020752404 cites W2160433722 @default.
- W2020752404 cites W2164063121 @default.
- W2020752404 cites W2168730731 @default.
- W2020752404 cites W2289565177 @default.
- W2020752404 doi "https://doi.org/10.1016/j.soildyn.2012.03.006" @default.
- W2020752404 hasPublicationYear "2012" @default.
- W2020752404 type Work @default.
- W2020752404 sameAs 2020752404 @default.
- W2020752404 citedByCount "15" @default.
- W2020752404 countsByYear W20207524042012 @default.
- W2020752404 countsByYear W20207524042014 @default.
- W2020752404 countsByYear W20207524042016 @default.
- W2020752404 countsByYear W20207524042017 @default.
- W2020752404 countsByYear W20207524042019 @default.
- W2020752404 countsByYear W20207524042020 @default.
- W2020752404 countsByYear W20207524042022 @default.
- W2020752404 crossrefType "journal-article" @default.
- W2020752404 hasAuthorship W2020752404A5037890027 @default.
- W2020752404 hasConcept C119857082 @default.
- W2020752404 hasConcept C121332964 @default.
- W2020752404 hasConcept C124101348 @default.
- W2020752404 hasConcept C126838900 @default.
- W2020752404 hasConcept C127313418 @default.
- W2020752404 hasConcept C154945302 @default.
- W2020752404 hasConcept C158622935 @default.
- W2020752404 hasConcept C165205528 @default.
- W2020752404 hasConcept C183115368 @default.
- W2020752404 hasConcept C189430467 @default.
- W2020752404 hasConcept C2988284105 @default.
- W2020752404 hasConcept C41008148 @default.
- W2020752404 hasConcept C50644808 @default.
- W2020752404 hasConcept C62520636 @default.
- W2020752404 hasConcept C69361100 @default.
- W2020752404 hasConcept C71924100 @default.
- W2020752404 hasConcept C84525736 @default.
- W2020752404 hasConceptScore W2020752404C119857082 @default.
- W2020752404 hasConceptScore W2020752404C121332964 @default.
- W2020752404 hasConceptScore W2020752404C124101348 @default.
- W2020752404 hasConceptScore W2020752404C126838900 @default.
- W2020752404 hasConceptScore W2020752404C127313418 @default.
- W2020752404 hasConceptScore W2020752404C154945302 @default.
- W2020752404 hasConceptScore W2020752404C158622935 @default.
- W2020752404 hasConceptScore W2020752404C165205528 @default.
- W2020752404 hasConceptScore W2020752404C183115368 @default.
- W2020752404 hasConceptScore W2020752404C189430467 @default.
- W2020752404 hasConceptScore W2020752404C2988284105 @default.
- W2020752404 hasConceptScore W2020752404C41008148 @default.
- W2020752404 hasConceptScore W2020752404C50644808 @default.
- W2020752404 hasConceptScore W2020752404C62520636 @default.
- W2020752404 hasConceptScore W2020752404C69361100 @default.
- W2020752404 hasConceptScore W2020752404C71924100 @default.
- W2020752404 hasConceptScore W2020752404C84525736 @default.