Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020762176> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2020762176 abstract "In seismic exploration, there is continuous drive towards more dense data sampling to better image complex geological structures. Recent advances in acquisition such as Wide-Azimuth, Multi-Azimuth or Rich-Azimuth acquisition can deliver a more diverse range of source, azimuth and offset sampling. To collect such data, multiple source and receiver vessels are deployed, thereby increasing the costs of the survey significantly. In conventional acquisition, there is zero time overlap between shot records, and data are recorded discontinuously. The source domain is often poorly sampled, leading to aliasing. In simultaneous acquisition, data can be recorded continuously, and temporal overlap between shots is allowed. Consequently, more sources are fired during the same period of acquisition, which greatly enhances the flexibility in survey geometries. As a result, a more densely sampled data set in terms of source spacing, but also azimuth and offset distributions can be obtained. In terms of efficiency, simultaneous acquisition can contribute by reducing survey times, which is of particular value in critical situations where small acquisition timewindows dominate due to severe safety, environmental or economic restrictions. As such, from an acquisition point of view, simultaneous acquisition holds the promise of both efficiency and quality improvements. However, unless source separation can be achieved to a sufficiently high degree, the enormous potential benefits of simultaneous sources remain unrealized. Two approaches are currently utilized by the industry to achieve source separation: methods based on random noise attenuation and inversion-based methods. By regarding the energy from secondary sources as incoherent noise, after sorting the acquired data into an appropriate domain, the interference noise appears as random spikes which could be attenuated using well-known random noise removal procedures. Alternatively, inversion-driven methods aim to construct the separated sources through the minimization of a cost function that describes the “data misfit”. In such methods, incoherent energy is no longer regarded as noise that is to be removed. Instead, this energy is recognized as a representation of coherent events belonging to (one of) the interfering shots. An inversion approach aims to distribute all energy in the blended shot records by reconstructing the individual unblended shot records at their respective locations. In this abstract, an inversion-driven method is utilized that uses coherency measures to reconstruct the individual shot gathers from the blended data. The method is demonstrated to be capable of separating sources, even in the presence of strong diffraction energy. The method can be used in conjunction with other methods, resulting in so-called hybrid solutions. A simultaneous source wide-azimuth 3D data set from the Gulf of Mexico is presented." @default.
- W2020762176 created "2016-06-24" @default.
- W2020762176 creator A5008826206 @default.
- W2020762176 creator A5044511562 @default.
- W2020762176 creator A5047292362 @default.
- W2020762176 creator A5073808319 @default.
- W2020762176 date "2012-07-04" @default.
- W2020762176 modified "2023-09-23" @default.
- W2020762176 title "An Inversion Approach to Separating Sources in Marine Simultaneous Shooting Acquisition" @default.
- W2020762176 doi "https://doi.org/10.3997/2214-4609.20149888" @default.
- W2020762176 hasPublicationYear "2012" @default.
- W2020762176 type Work @default.
- W2020762176 sameAs 2020762176 @default.
- W2020762176 citedByCount "2" @default.
- W2020762176 countsByYear W20207621762013 @default.
- W2020762176 crossrefType "proceedings-article" @default.
- W2020762176 hasAuthorship W2020762176A5008826206 @default.
- W2020762176 hasAuthorship W2020762176A5044511562 @default.
- W2020762176 hasAuthorship W2020762176A5047292362 @default.
- W2020762176 hasAuthorship W2020762176A5073808319 @default.
- W2020762176 hasConcept C106131492 @default.
- W2020762176 hasConcept C109007969 @default.
- W2020762176 hasConcept C111919701 @default.
- W2020762176 hasConcept C120665830 @default.
- W2020762176 hasConcept C121332964 @default.
- W2020762176 hasConcept C127313418 @default.
- W2020762176 hasConcept C127413603 @default.
- W2020762176 hasConcept C136536468 @default.
- W2020762176 hasConcept C140779682 @default.
- W2020762176 hasConcept C151730666 @default.
- W2020762176 hasConcept C159737794 @default.
- W2020762176 hasConcept C163985040 @default.
- W2020762176 hasConcept C175291020 @default.
- W2020762176 hasConcept C176217482 @default.
- W2020762176 hasConcept C1893757 @default.
- W2020762176 hasConcept C199360897 @default.
- W2020762176 hasConcept C21547014 @default.
- W2020762176 hasConcept C24756922 @default.
- W2020762176 hasConcept C2779726219 @default.
- W2020762176 hasConcept C31972630 @default.
- W2020762176 hasConcept C4069607 @default.
- W2020762176 hasConcept C41008148 @default.
- W2020762176 hasConcept C62649853 @default.
- W2020762176 hasConceptScore W2020762176C106131492 @default.
- W2020762176 hasConceptScore W2020762176C109007969 @default.
- W2020762176 hasConceptScore W2020762176C111919701 @default.
- W2020762176 hasConceptScore W2020762176C120665830 @default.
- W2020762176 hasConceptScore W2020762176C121332964 @default.
- W2020762176 hasConceptScore W2020762176C127313418 @default.
- W2020762176 hasConceptScore W2020762176C127413603 @default.
- W2020762176 hasConceptScore W2020762176C136536468 @default.
- W2020762176 hasConceptScore W2020762176C140779682 @default.
- W2020762176 hasConceptScore W2020762176C151730666 @default.
- W2020762176 hasConceptScore W2020762176C159737794 @default.
- W2020762176 hasConceptScore W2020762176C163985040 @default.
- W2020762176 hasConceptScore W2020762176C175291020 @default.
- W2020762176 hasConceptScore W2020762176C176217482 @default.
- W2020762176 hasConceptScore W2020762176C1893757 @default.
- W2020762176 hasConceptScore W2020762176C199360897 @default.
- W2020762176 hasConceptScore W2020762176C21547014 @default.
- W2020762176 hasConceptScore W2020762176C24756922 @default.
- W2020762176 hasConceptScore W2020762176C2779726219 @default.
- W2020762176 hasConceptScore W2020762176C31972630 @default.
- W2020762176 hasConceptScore W2020762176C4069607 @default.
- W2020762176 hasConceptScore W2020762176C41008148 @default.
- W2020762176 hasConceptScore W2020762176C62649853 @default.
- W2020762176 hasLocation W20207621761 @default.
- W2020762176 hasOpenAccess W2020762176 @default.
- W2020762176 hasPrimaryLocation W20207621761 @default.
- W2020762176 hasRelatedWork W1985540809 @default.
- W2020762176 hasRelatedWork W2022749763 @default.
- W2020762176 hasRelatedWork W2038458808 @default.
- W2020762176 hasRelatedWork W2183753900 @default.
- W2020762176 hasRelatedWork W2184739326 @default.
- W2020762176 hasRelatedWork W2188638812 @default.
- W2020762176 hasRelatedWork W2312759783 @default.
- W2020762176 hasRelatedWork W2313721204 @default.
- W2020762176 hasRelatedWork W2314485892 @default.
- W2020762176 hasRelatedWork W2314665693 @default.
- W2020762176 hasRelatedWork W2333568405 @default.
- W2020762176 hasRelatedWork W2620366620 @default.
- W2020762176 hasRelatedWork W2888875922 @default.
- W2020762176 hasRelatedWork W2970052403 @default.
- W2020762176 hasRelatedWork W3021028120 @default.
- W2020762176 hasRelatedWork W3092963871 @default.
- W2020762176 hasRelatedWork W3123959890 @default.
- W2020762176 hasRelatedWork W3126608911 @default.
- W2020762176 hasRelatedWork W1499309959 @default.
- W2020762176 hasRelatedWork W2185626409 @default.
- W2020762176 isParatext "false" @default.
- W2020762176 isRetracted "false" @default.
- W2020762176 magId "2020762176" @default.
- W2020762176 workType "article" @default.