Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020778306> ?p ?o ?g. }
- W2020778306 endingPage "40" @default.
- W2020778306 startingPage "30" @default.
- W2020778306 abstract "• Juvenile rainbow trout health and performance was compared between high vs. low nitrate conditions in recirculating systems. • A significantly greater prevalence of “side swimming” rainbow trout was quantified for the high nitrate treatment. • Slightly slower growth and decreased survival resulted in significantly lower fish biomass for the high nitrate treatment. • High nitrate nitrogen (80–100 mg/L) was related to chronic health and welfare impacts to juvenile rainbow trout. Previous research indicates that rainbow trout Oncorhynchus mykiss begin to exhibit health and welfare problems when cultured within water recirculating aquaculture systems (WRAS) operated at low exchange (6.7 days hydraulic retention time) and a mean feed loading rate of 4.1 kg feed/m 3 daily makeup flow. These studies could not conclusively determine the causative agent of the health and welfare issues, but accumulation of mean nitrate nitrogen (NO 3 -N) to approximately 100 mg/L was determined to be a potential cause of abnormal swimming behaviors such as “side swimming” and rapid swimming velocity. A subsequent controlled, 3-month study was conducted to determine if NO 3 -N concentrations of 80–100 mg/L resulted in chronic health issues for rainbow trout. Equal numbers of rainbow trout (16.4 ± 0.3 g) were stocked within six replicated 9.5 m 3 WRAS. Three WRAS were maintained with a mean NO 3 -N concentration of 30 mg/L (“low”) resulting from nitrification, and three WRAS were maintained with a mean concentration of 91 mg/L (“high”) via continuous dosing of a sodium nitrate stock solution in addition to nitrification. All six WRAS were operated with equal water exchange (1.3 days mean hydraulic retention time) and mean feed loading rates (0.72 kg feed/m 3 daily makeup flow), which provided enough flushing to limit the accumulation of other water quality concentrations. Rainbow trout growth was not significantly impacted by the high NO 3 -N treatment. Cumulative survival for fish cultured within the high NO 3 -N WRAS was lower and bordered statistical significance, which resulted in total rainbow trout biomass that was significantly lower for this group at study's end. In addition, a significantly greater prevalence of side swimming rainbow trout occurred in the high NO 3 -N treatment, as was observed during previous research. Swimming speeds were generally greater for rainbow trout cultured in the high NO 3 -N treatment, but were not always significantly different. Although most water quality variables were controlled, significant differences between treatments for the concentrations of other water quality parameters inhibited definitive conclusions regarding the effect of NO 3 -N. However, due to the unlikely toxicity of confounding water quality parameters, study results provided strong evidence that relatively low NO 3 -N levels, 80–100 mg/L, were related to chronic health and welfare impacts to juvenile rainbow trout under the described conditions." @default.
- W2020778306 created "2016-06-24" @default.
- W2020778306 creator A5002178837 @default.
- W2020778306 creator A5019365089 @default.
- W2020778306 creator A5088416642 @default.
- W2020778306 creator A5090247895 @default.
- W2020778306 date "2014-03-01" @default.
- W2020778306 modified "2023-09-24" @default.
- W2020778306 title "Comparing the effects of high vs. low nitrate on the health, performance, and welfare of juvenile rainbow trout Oncorhynchus mykiss within water recirculating aquaculture systems" @default.
- W2020778306 cites W1964499340 @default.
- W2020778306 cites W1967934855 @default.
- W2020778306 cites W1968500492 @default.
- W2020778306 cites W1976372511 @default.
- W2020778306 cites W1981429299 @default.
- W2020778306 cites W1983184939 @default.
- W2020778306 cites W1986033679 @default.
- W2020778306 cites W2000500012 @default.
- W2020778306 cites W2006823242 @default.
- W2020778306 cites W2011604132 @default.
- W2020778306 cites W2014120297 @default.
- W2020778306 cites W2025055859 @default.
- W2020778306 cites W2059177982 @default.
- W2020778306 cites W2062381883 @default.
- W2020778306 cites W2066298324 @default.
- W2020778306 cites W2073198130 @default.
- W2020778306 cites W2073385791 @default.
- W2020778306 cites W2087046344 @default.
- W2020778306 cites W2087113178 @default.
- W2020778306 cites W2111792167 @default.
- W2020778306 cites W2117104235 @default.
- W2020778306 cites W2120768881 @default.
- W2020778306 cites W2121105589 @default.
- W2020778306 cites W2121274787 @default.
- W2020778306 cites W2131448912 @default.
- W2020778306 cites W2139778911 @default.
- W2020778306 cites W2155126039 @default.
- W2020778306 cites W2156492351 @default.
- W2020778306 cites W2167459549 @default.
- W2020778306 cites W2190768045 @default.
- W2020778306 doi "https://doi.org/10.1016/j.aquaeng.2014.01.003" @default.
- W2020778306 hasPublicationYear "2014" @default.
- W2020778306 type Work @default.
- W2020778306 sameAs 2020778306 @default.
- W2020778306 citedByCount "111" @default.
- W2020778306 countsByYear W20207783062014 @default.
- W2020778306 countsByYear W20207783062015 @default.
- W2020778306 countsByYear W20207783062016 @default.
- W2020778306 countsByYear W20207783062017 @default.
- W2020778306 countsByYear W20207783062018 @default.
- W2020778306 countsByYear W20207783062019 @default.
- W2020778306 countsByYear W20207783062020 @default.
- W2020778306 countsByYear W20207783062021 @default.
- W2020778306 countsByYear W20207783062022 @default.
- W2020778306 countsByYear W20207783062023 @default.
- W2020778306 crossrefType "journal-article" @default.
- W2020778306 hasAuthorship W2020778306A5002178837 @default.
- W2020778306 hasAuthorship W2020778306A5019365089 @default.
- W2020778306 hasAuthorship W2020778306A5088416642 @default.
- W2020778306 hasAuthorship W2020778306A5090247895 @default.
- W2020778306 hasBestOaLocation W20207783061 @default.
- W2020778306 hasConcept C115961737 @default.
- W2020778306 hasConcept C140793950 @default.
- W2020778306 hasConcept C164752452 @default.
- W2020778306 hasConcept C178790620 @default.
- W2020778306 hasConcept C185592680 @default.
- W2020778306 hasConcept C18903297 @default.
- W2020778306 hasConcept C2776384668 @default.
- W2020778306 hasConcept C2776928589 @default.
- W2020778306 hasConcept C2779363728 @default.
- W2020778306 hasConcept C2909208804 @default.
- W2020778306 hasConcept C2994167347 @default.
- W2020778306 hasConcept C505870484 @default.
- W2020778306 hasConcept C537208039 @default.
- W2020778306 hasConcept C86803240 @default.
- W2020778306 hasConcept C86909935 @default.
- W2020778306 hasConceptScore W2020778306C115961737 @default.
- W2020778306 hasConceptScore W2020778306C140793950 @default.
- W2020778306 hasConceptScore W2020778306C164752452 @default.
- W2020778306 hasConceptScore W2020778306C178790620 @default.
- W2020778306 hasConceptScore W2020778306C185592680 @default.
- W2020778306 hasConceptScore W2020778306C18903297 @default.
- W2020778306 hasConceptScore W2020778306C2776384668 @default.
- W2020778306 hasConceptScore W2020778306C2776928589 @default.
- W2020778306 hasConceptScore W2020778306C2779363728 @default.
- W2020778306 hasConceptScore W2020778306C2909208804 @default.
- W2020778306 hasConceptScore W2020778306C2994167347 @default.
- W2020778306 hasConceptScore W2020778306C505870484 @default.
- W2020778306 hasConceptScore W2020778306C537208039 @default.
- W2020778306 hasConceptScore W2020778306C86803240 @default.
- W2020778306 hasConceptScore W2020778306C86909935 @default.
- W2020778306 hasFunder F4320332605 @default.
- W2020778306 hasLocation W20207783061 @default.
- W2020778306 hasOpenAccess W2020778306 @default.
- W2020778306 hasPrimaryLocation W20207783061 @default.
- W2020778306 hasRelatedWork W1980132043 @default.
- W2020778306 hasRelatedWork W2021327018 @default.
- W2020778306 hasRelatedWork W2033518639 @default.
- W2020778306 hasRelatedWork W2041446885 @default.