Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020798301> ?p ?o ?g. }
- W2020798301 endingPage "418" @default.
- W2020798301 startingPage "406" @default.
- W2020798301 abstract "The presence of Missing Values in a data set can affect the performance of a classifier constructed using that data set as a training sample. Several methods have been proposed to treat missing data and the one used more frequently is the imputation of the Missing Values of an instance. In this paper, we analyze the improvement of performance on Radial Basis Function Networks by means of the use of several imputation methods in the classification task with missing values. The study has been conducted using data sets with real Missing Values, and data sets with artificial Missing Values. The results obtained show that EventCovering offers a very good synergy with Radial Basis Function Networks. It allows us to overcome the negative impact of the presence of Missing Values to a certain degree." @default.
- W2020798301 created "2016-06-24" @default.
- W2020798301 creator A5015587020 @default.
- W2020798301 creator A5017039863 @default.
- W2020798301 creator A5078909305 @default.
- W2020798301 date "2010-04-01" @default.
- W2020798301 modified "2023-10-18" @default.
- W2020798301 title "A study on the use of imputation methods for experimentation with Radial Basis Function Network classifiers handling missing attribute values: The good synergy between RBFNs and EventCovering method" @default.
- W2020798301 cites W1515802933 @default.
- W2020798301 cites W1963581687 @default.
- W2020798301 cites W1983479840 @default.
- W2020798301 cites W1984049995 @default.
- W2020798301 cites W1989645409 @default.
- W2020798301 cites W1991554637 @default.
- W2020798301 cites W1992329416 @default.
- W2020798301 cites W1998242011 @default.
- W2020798301 cites W2000613518 @default.
- W2020798301 cites W2001367291 @default.
- W2020798301 cites W2004753031 @default.
- W2020798301 cites W2018596815 @default.
- W2020798301 cites W2023161567 @default.
- W2020798301 cites W2024184249 @default.
- W2020798301 cites W2045989506 @default.
- W2020798301 cites W2058271794 @default.
- W2020798301 cites W2059932969 @default.
- W2020798301 cites W2060965100 @default.
- W2020798301 cites W2068458829 @default.
- W2020798301 cites W2096863518 @default.
- W2020798301 cites W2114865067 @default.
- W2020798301 cites W2115986610 @default.
- W2020798301 cites W2139976081 @default.
- W2020798301 cites W2143186228 @default.
- W2020798301 cites W2148737504 @default.
- W2020798301 cites W2150731931 @default.
- W2020798301 cites W2152605351 @default.
- W2020798301 cites W2156267802 @default.
- W2020798301 cites W2158247472 @default.
- W2020798301 cites W2171118759 @default.
- W2020798301 cites W2171604354 @default.
- W2020798301 cites W2174160981 @default.
- W2020798301 doi "https://doi.org/10.1016/j.neunet.2009.11.014" @default.
- W2020798301 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20015612" @default.
- W2020798301 hasPublicationYear "2010" @default.
- W2020798301 type Work @default.
- W2020798301 sameAs 2020798301 @default.
- W2020798301 citedByCount "81" @default.
- W2020798301 countsByYear W20207983012012 @default.
- W2020798301 countsByYear W20207983012013 @default.
- W2020798301 countsByYear W20207983012014 @default.
- W2020798301 countsByYear W20207983012015 @default.
- W2020798301 countsByYear W20207983012016 @default.
- W2020798301 countsByYear W20207983012017 @default.
- W2020798301 countsByYear W20207983012018 @default.
- W2020798301 countsByYear W20207983012019 @default.
- W2020798301 countsByYear W20207983012020 @default.
- W2020798301 countsByYear W20207983012021 @default.
- W2020798301 countsByYear W20207983012022 @default.
- W2020798301 countsByYear W20207983012023 @default.
- W2020798301 crossrefType "journal-article" @default.
- W2020798301 hasAuthorship W2020798301A5015587020 @default.
- W2020798301 hasAuthorship W2020798301A5017039863 @default.
- W2020798301 hasAuthorship W2020798301A5078909305 @default.
- W2020798301 hasConcept C119857082 @default.
- W2020798301 hasConcept C124101348 @default.
- W2020798301 hasConcept C132917294 @default.
- W2020798301 hasConcept C153180895 @default.
- W2020798301 hasConcept C154945302 @default.
- W2020798301 hasConcept C41008148 @default.
- W2020798301 hasConcept C50644808 @default.
- W2020798301 hasConcept C58041806 @default.
- W2020798301 hasConcept C58489278 @default.
- W2020798301 hasConcept C9357733 @default.
- W2020798301 hasConcept C95623464 @default.
- W2020798301 hasConcept C98856871 @default.
- W2020798301 hasConceptScore W2020798301C119857082 @default.
- W2020798301 hasConceptScore W2020798301C124101348 @default.
- W2020798301 hasConceptScore W2020798301C132917294 @default.
- W2020798301 hasConceptScore W2020798301C153180895 @default.
- W2020798301 hasConceptScore W2020798301C154945302 @default.
- W2020798301 hasConceptScore W2020798301C41008148 @default.
- W2020798301 hasConceptScore W2020798301C50644808 @default.
- W2020798301 hasConceptScore W2020798301C58041806 @default.
- W2020798301 hasConceptScore W2020798301C58489278 @default.
- W2020798301 hasConceptScore W2020798301C9357733 @default.
- W2020798301 hasConceptScore W2020798301C95623464 @default.
- W2020798301 hasConceptScore W2020798301C98856871 @default.
- W2020798301 hasFunder F4320321764 @default.
- W2020798301 hasIssue "3" @default.
- W2020798301 hasLocation W20207983011 @default.
- W2020798301 hasLocation W20207983012 @default.
- W2020798301 hasOpenAccess W2020798301 @default.
- W2020798301 hasPrimaryLocation W20207983011 @default.
- W2020798301 hasRelatedWork W186161899 @default.
- W2020798301 hasRelatedWork W2020798301 @default.
- W2020798301 hasRelatedWork W2074587066 @default.
- W2020798301 hasRelatedWork W2906862824 @default.
- W2020798301 hasRelatedWork W2938680702 @default.
- W2020798301 hasRelatedWork W2964631039 @default.